Artigos de revistas sobre o tema "Metal-support interactions"

Siga este link para ver outros tipos de publicações sobre o tema: Metal-support interactions.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Metal-support interactions".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Tauster, S. J. "Strong metal-support interactions". Accounts of Chemical Research 20, n.º 11 (novembro de 1987): 389–94. http://dx.doi.org/10.1021/ar00143a001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

BURCH, R. "Metal sulfide-support interactions". Journal of Catalysis 97, n.º 2 (fevereiro de 1986): 385–89. http://dx.doi.org/10.1016/0021-9517(86)90010-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Du, Xiaorui, Hailian Tang e Botao Qiao. "Oxidative Strong Metal–Support Interactions". Catalysts 11, n.º 8 (25 de julho de 2021): 896. http://dx.doi.org/10.3390/catal11080896.

Texto completo da fonte
Resumo:
The discoveries and development of the oxidative strong metal–support interaction (OMSI) phenomena in recent years not only promote new and deeper understanding of strong metal–support interaction (SMSI) but also open an alternative way to develop supported heterogeneous catalysts with better performance. In this review, the brief history as well as the definition of OMSI and its difference from classical SMSI are described. The identification of OMSI and the corresponding characterization methods are expounded. Furthermore, the application of OMSI in enhancing catalyst performance, and the influence of OMSI in inspiring discoveries of new types of SMSI are discussed. Finally, a brief summary is presented and some prospects are proposed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

del Arco, M., e V. Rives. "Metal-support and metal oxide-support interactions in Cu/TiO2". Reaction Kinetics and Catalysis Letters 31, n.º 1 (março de 1986): 239–44. http://dx.doi.org/10.1007/bf02062539.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Guenin, M., P. N. Da Silva e R. Frety. "Influence of chlorine towards metal-support and metal-sulphur support interactions". Applied Catalysis 27, n.º 2 (janeiro de 1986): 313–23. http://dx.doi.org/10.1016/s0166-9834(00)82927-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Douidah, A., P. Marécot, S. Szabo e J. Barbier. "Evaluation of the metal–support interactions". Applied Catalysis A: General 225, n.º 1-2 (fevereiro de 2002): 21–31. http://dx.doi.org/10.1016/s0926-860x(01)00627-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Nicole, J., D. Tsiplakides, C. Pliangos, X. E. Verykios, Ch Comninellis e C. G. Vayenas. "Electrochemical Promotion and Metal–Support Interactions". Journal of Catalysis 204, n.º 1 (novembro de 2001): 23–34. http://dx.doi.org/10.1006/jcat.2001.3360.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

BADYAL, J. P. S. "ChemInform Abstract: Strong Metal-Support Interactions". ChemInform 25, n.º 2 (19 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199402301.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Li, Yangyang, Yunshang Zhang, Kun Qian e Weixin Huang. "Metal–Support Interactions in Metal/Oxide Catalysts and Oxide–Metal Interactions in Oxide/Metal Inverse Catalysts". ACS Catalysis 12, n.º 2 (6 de janeiro de 2022): 1268–87. http://dx.doi.org/10.1021/acscatal.1c04854.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Okamoto, Yasuaki, Takeshi Kubota, Yoshiharu Ohto e Saburo Nasu. "Metal Oxide−Support Interactions in Fe/ZrO2Catalysts". Journal of Physical Chemistry B 104, n.º 35 (setembro de 2000): 8462–70. http://dx.doi.org/10.1021/jp994122t.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Huang, Yuhui, Rui Zou, Yanjun Lin e Chao Lu. "Electronic Metal–Support Interactions for Electrochemiluminescence Signal Amplification". Analytical Chemistry 93, n.º 32 (4 de agosto de 2021): 11291–97. http://dx.doi.org/10.1021/acs.analchem.1c02423.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Linsmeier, Ch, e E. Taglauer. "Strong metal–support interactions on rhodium model catalysts". Applied Catalysis A: General 391, n.º 1-2 (janeiro de 2011): 175–86. http://dx.doi.org/10.1016/j.apcata.2010.07.051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Fujiwara, Kakeru, Kikuo Okuyama e Sotiris E. Pratsinis. "Metal–support interactions in catalysts for environmental remediation". Environmental Science: Nano 4, n.º 11 (2017): 2076–92. http://dx.doi.org/10.1039/c7en00678k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, Michiel Makkee, Fei Xu, Freek Kapteijn, Alla Dikhtiarenko, Yaxin Chen, Xiao Gu e Xingfu Tang. "Electronic Metal-Support Interactions in Single-Atom Catalysts". Angewandte Chemie 126, n.º 13 (5 de março de 2014): 3486–89. http://dx.doi.org/10.1002/ange.201309248.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Hu, Pingping, Zhiwei Huang, Zakariae Amghouz, Michiel Makkee, Fei Xu, Freek Kapteijn, Alla Dikhtiarenko, Yaxin Chen, Xiao Gu e Xingfu Tang. "Electronic Metal-Support Interactions in Single-Atom Catalysts". Angewandte Chemie International Edition 53, n.º 13 (5 de março de 2014): 3418–21. http://dx.doi.org/10.1002/anie.201309248.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Liu, Jingyue Jimmy. "Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts". ChemCatChem 3, n.º 6 (7 de junho de 2011): 934–48. http://dx.doi.org/10.1002/cctc.201100090.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Tang, Hailian, Yang Su, Yalin Guo, Leilei Zhang, Tianbo Li, Ketao Zang, Fei Liu et al. "Oxidative strong metal–support interactions (OMSI) of supported platinum-group metal catalysts". Chemical Science 9, n.º 32 (2018): 6679–84. http://dx.doi.org/10.1039/c8sc01392f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Kubička, David, Narendra Kumar, Tapani Venäläinen, Hannu Karhu, Iva Kubičková, Heidi Österholm e Dmitry Yu Murzin. "Metal−Support Interactions in Zeolite-Supported Noble Metals: Influence of Metal Crystallites on the Support Acidity". Journal of Physical Chemistry B 110, n.º 10 (março de 2006): 4937–46. http://dx.doi.org/10.1021/jp055754k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Guo, Yu, e Ya-Wen Zhang. "Metal Clusters Dispersed on Oxide Supports: Preparation Methods and Metal-Support Interactions". Topics in Catalysis 61, n.º 9-11 (15 de maio de 2018): 855–74. http://dx.doi.org/10.1007/s11244-018-0957-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Tang, Hailian, Jiake Wei, Fei Liu, Botao Qiao, Xiaoli Pan, Lin Li, Jingyue Liu, Junhu Wang e Tao Zhang. "Strong Metal–Support Interactions between Gold Nanoparticles and Nonoxides". Journal of the American Chemical Society 138, n.º 1 (28 de dezembro de 2015): 56–59. http://dx.doi.org/10.1021/jacs.5b11306.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Vander Wal, Randall L., Thomas M. Ticich e Valerie E. Curtis. "Substrate–support interactions in metal-catalyzed carbon nanofiber growth". Carbon 39, n.º 15 (dezembro de 2001): 2277–89. http://dx.doi.org/10.1016/s0008-6223(01)00047-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

BRAUNSCHWEIG, E. "Reversibility of strong metal-support interactions on Rh/TiO2". Journal of Catalysis 118, n.º 1 (julho de 1989): 227–37. http://dx.doi.org/10.1016/0021-9517(89)90313-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Puskas, Imre, Theo H. Fleisch, Jan B. Hall, Bernard L. Meyers e Robert T. Roginski. "Metal-support interactions in precipitated, magnesium-promoted cobaltsilica catalysts". Journal of Catalysis 134, n.º 2 (abril de 1992): 615–28. http://dx.doi.org/10.1016/0021-9517(92)90347-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Cargnello, M., P. Fornasiero e R. J. Gorte. "Opportunities for Tailoring Catalytic Properties Through Metal-Support Interactions". Catalysis Letters 142, n.º 9 (7 de agosto de 2012): 1043–48. http://dx.doi.org/10.1007/s10562-012-0883-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Campisi, Sebastiano, Carine Chan-Thaw e Alberto Villa. "Understanding Heteroatom-Mediated Metal–Support Interactions in Functionalized Carbons: A Perspective Review". Applied Sciences 8, n.º 7 (17 de julho de 2018): 1159. http://dx.doi.org/10.3390/app8071159.

Texto completo da fonte
Resumo:
Carbon-based materials show unique chemicophysical properties, and they have been successfully used in many catalytic processes, including the production of chemicals and energy. The introduction of heteroatoms (N, B, P, S) alters the electronic properties, often increasing the reactivity of the surface of nanocarbons. The functional groups on the carbons have been reported to be effective for anchoring metal nanoparticles. Although the interaction between functional groups and metal has been studied by various characterization techniques, theoretical models, and catalytic results, the role and nature of heteroatoms is still an object of discussion. The aim of this review is to elucidate the metal–heteroatoms interaction, providing an overview of the main experimental and theoretical outcomes about heteroatom-mediated metal–support interactions. Selected studies showing the effect of heteroatom–metal interaction in the liquid-phase alcohol oxidation will be also presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Luo, Zijie, Jia Wang, Wei Zhou e Junsheng Li. "Catalyst-Support Interactions Promoted Acidic Electrochemical Oxygen Evolution Catalysis: A Mini Review". Molecules 28, n.º 5 (28 de fevereiro de 2023): 2262. http://dx.doi.org/10.3390/molecules28052262.

Texto completo da fonte
Resumo:
In the context of the growing human demand for green secondary energy sources, proton-exchange membrane water electrolysis (PEMWE) is necessary to meet the high-efficiency production of high-purity hydrogen required for proton-exchange membrane fuel cells (PEMFCs). The development of stable, efficient, and low-cost oxygen evolution reaction (OER) catalysts is key to promoting the large-scale application of hydrogen production by PEMWE. At present, precious metals remain irreplaceable in acidic OER catalysis, and loading the support body with precious metal components is undoubtedly an effective strategy to reduce costs. In this review, we will discuss the unique role of common catalyst-support interactions such as Metal-Support Interactions (MSIs), Strong Metal-Support Interactions (SMSIs), Strong Oxide-Support Interactions (SOSIs), and Electron-Metal-Support Interactions (EMSIs) in modulating catalyst structure and performance, thereby promoting the development of high-performance, high-stability, low-cost noble metal-based acidic OER catalysts.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Gómez-Polo, C., A. Gil, S. A. Korili, J. I. Pérez-Landazabal, V. Recarte, R. Trujillano e M. A. Vicente. "Magnetic Properties of Nickel and Cobalt Catalysts Supported on Nanoporous Oxides". Journal of Nanoscience and Nanotechnology 8, n.º 6 (1 de junho de 2008): 2905–11. http://dx.doi.org/10.1166/jnn.2008.18317.

Texto completo da fonte
Resumo:
The aim of this work is to use magnetic measurements as a research tool in the study of possible metal-support interactions in nickel and cobalt nanoporous catalysts. Several physicochemical techniques, namely nitrogen adsorption, X-ray diffraction, temperature-programmed reduction and chemical analysis, were used to analyze the role of the preparation method and the nature of the support on the existence of such metal-support interactions and to relate them with the magnetic response of these nanoporous systems. The catalysts were prepared by incipient wetness impregnation and precipitation-deposition with two commercial oxides, γ-Al2O3 and SiO2, as supports. The magnetic behavior of the catalysts is drastically affected by the existence of interactions between the metal and the support during the preparation procedure. The samples with weak metal-support interactions have characteristic magnetic behavior of antiferromagnetic metal oxide nanoparticles, while the ones having strong interactions display spin-glass like behavior.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Konsolakis, Michalis, e Zisis Ioakeimidis. "Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions". Applied Surface Science 320 (novembro de 2014): 244–55. http://dx.doi.org/10.1016/j.apsusc.2014.08.114.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Ji, L., J. Lin e H. C. Zeng. "Metal−Support Interactions in Co/Al2O3Catalysts: A Comparative Study on Reactivity of Support". Journal of Physical Chemistry B 104, n.º 8 (março de 2000): 1783–90. http://dx.doi.org/10.1021/jp993400l.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Liu, Jingyue. "ChemInform Abstract: Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts". ChemInform 42, n.º 41 (19 de setembro de 2011): no. http://dx.doi.org/10.1002/chin.201141203.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Mogorosi, Ramoshibidu P., Nico Fischer, Michael Claeys e Eric van Steen. "Strong-metal–support interaction by molecular design: Fe–silicate interactions in Fischer–Tropsch catalysts". Journal of Catalysis 289 (maio de 2012): 140–50. http://dx.doi.org/10.1016/j.jcat.2012.02.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, Aiping Jia, Dan Li, Lei Shi, Jun Hu, Junfa Zhu e Weixin Huang. "Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions". Angewandte Chemie International Edition 60, n.º 21 (16 de abril de 2021): 12074–81. http://dx.doi.org/10.1002/anie.202101928.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Zhang, Yunshang, Jin‐Xun Liu, Kun Qian, Aiping Jia, Dan Li, Lei Shi, Jun Hu, Junfa Zhu e Weixin Huang. "Structure Sensitivity of Au‐TiO 2 Strong Metal–Support Interactions". Angewandte Chemie 133, n.º 21 (16 de abril de 2021): 12181–88. http://dx.doi.org/10.1002/ange.202101928.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Vaarkamp, Marius, Jeff T. Miller, Frank S. Modica e Dick C. Koningsberger. "The Influence of Metal-Support Interactions on the Whiteline Intensity". Japanese Journal of Applied Physics 32, S2 (1 de janeiro de 1993): 454. http://dx.doi.org/10.7567/jjaps.32s2.454.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Shi, Qiaolan, Tianrong Yu, Renfei Wu e Jian Liu. "Metal–Support Interactions of Single-Atom Catalysts for Biomedical Applications". ACS Applied Materials & Interfaces 13, n.º 51 (16 de dezembro de 2021): 60815–36. http://dx.doi.org/10.1021/acsami.1c18797.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Sault, Allen G., Charles H. F. Peden e Elaine P. Boespflug. "Metal-Support Interactions in Hydrous Titanium Oxide-Supported Nickel Catalysts". Journal of Physical Chemistry 98, n.º 6 (fevereiro de 1994): 1652–62. http://dx.doi.org/10.1021/j100057a019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Ahmadi, M., H. Mistry e B. Roldan Cuenya. "Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions". Journal of Physical Chemistry Letters 7, n.º 17 (25 de agosto de 2016): 3519–33. http://dx.doi.org/10.1021/acs.jpclett.6b01198.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Ozin, Geoffrey A., Francois Hugues e Saba M. Mattar. "Atomic silver fluorescent probe of metal-support interactions in zeolites". Journal of Physical Chemistry 89, n.º 2 (janeiro de 1985): 300–304. http://dx.doi.org/10.1021/j100248a025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Mullins, D. R., e K. Z. Zhang. "Metal–support interactions between Pt and thin film cerium oxide". Surface Science 513, n.º 1 (julho de 2002): 163–73. http://dx.doi.org/10.1016/s0039-6028(02)01704-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Soria, J., M. T. Blasco e J. C. Conesa. "Metal-support interactions in supported nickel catalysts: a FMR study". Surface Science Letters 251-252 (julho de 1991): A373. http://dx.doi.org/10.1016/0167-2584(91)91015-o.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

AKUBUIRO, E. "Dopant-induced metal-support interactions 1. Influence on chemisorptive behavior". Journal of Catalysis 103, n.º 2 (fevereiro de 1987): 320–33. http://dx.doi.org/10.1016/0021-9517(87)90124-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Soria, J., M. T. Blasco e J. C. Conesa. "Metal-support interactions in supported nickel catalysts: a FMR study". Surface Science 251-252 (julho de 1991): 1018–22. http://dx.doi.org/10.1016/0039-6028(91)91143-l.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Cammarota, Ryan C., Laura J. Clouston e Connie C. Lu. "Leveraging molecular metal–support interactions for H2 and N2 activation". Coordination Chemistry Reviews 334 (março de 2017): 100–111. http://dx.doi.org/10.1016/j.ccr.2016.06.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Vayenas, C. G., e G. E. Pitselis. "Mathematical Modeling of Electrochemical Promotion and of Metal−Support Interactions". Industrial & Engineering Chemistry Research 40, n.º 20 (outubro de 2001): 4209–15. http://dx.doi.org/10.1021/ie010001f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Chen, Kaidong, Yining Fan e Qijie Yan. "Metal–Support Interactions in Fe/ZrO2Catalysts for Hydrogenation of CO". Journal of Catalysis 167, n.º 2 (abril de 1997): 573–75. http://dx.doi.org/10.1006/jcat.1997.1592.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Vayenas, Costas G. "Promotion, Electrochemical Promotion and Metal–Support Interactions: Their Common Features". Catalysis Letters 143, n.º 11 (22 de outubro de 2013): 1085–97. http://dx.doi.org/10.1007/s10562-013-1128-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Tan, Kaiyang, Mudit Dixit, James Dean e Giannis Mpourmpakis. "Predicting Metal–Support Interactions in Oxide-Supported Single-Atom Catalysts". Industrial & Engineering Chemistry Research 58, n.º 44 (8 de outubro de 2019): 20236–46. http://dx.doi.org/10.1021/acs.iecr.9b04068.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Liu, Lichen, Chengyan Ge, Weixin Zou, Xianrui Gu, Fei Gao e Lin Dong. "Crystal-plane-dependent metal–support interaction in Au/TiO2". Physical Chemistry Chemical Physics 17, n.º 7 (2015): 5133–40. http://dx.doi.org/10.1039/c4cp05449k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Frey, H., A. Beck, X. Huang, J. A. van Bokhoven e M. G. Willinger. "Dynamic interplay between metal nanoparticles and oxide support under redox conditions". Science 376, n.º 6596 (27 de maio de 2022): 982–87. http://dx.doi.org/10.1126/science.abm3371.

Texto completo da fonte
Resumo:
The dynamic interactions between noble metal particles and reducible metal-oxide supports can depend on redox reactions with ambient gases. Transmission electron microscopy revealed that the strong metal-support interaction (SMSI)–induced encapsulation of platinum particles on titania observed under reducing conditions is lost once the system is exposed to a redox-reactive environment containing oxygen and hydrogen at a total pressure of ~1 bar. Destabilization of the metal–oxide interface and redox-mediated reconstructions of titania lead to particle dynamics and directed particle migration that depend on nanoparticle orientation. A static encapsulated SMSI state was reestablished when switching back to purely oxidizing conditions. This work highlights the difference between reactive and nonreactive states and demonstrates that manifestations of the metal-support interaction strongly depend on the chemical environment.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Wang, Fei, Jianzhun Jiang e Bin Wang. "Recent In Situ/Operando Spectroscopy Studies of Heterogeneous Catalysis with Reducible Metal Oxides as Supports". Catalysts 9, n.º 5 (23 de maio de 2019): 477. http://dx.doi.org/10.3390/catal9050477.

Texto completo da fonte
Resumo:
For heterogeneous catalysis, the metal catalysts supported on reducible metal oxides, especially CeO2 and TiO2, have long been a research focus because of their excellent catalytic performance in a variety of catalytic reactions. Detailed understanding of the promotion effect of reducible metal oxides on catalytic reactions is beneficial to the rational design of new catalysts. The important catalytic roles of reducible metal oxides are attributed to their intimate interactions with the supported metals (e.g., strong metal-support interaction, electronic metal-support interaction) and unique support structures (e.g., oxygen vacancy, reversible valence change, surface hydroxyl). However, the structures of the catalysts and reaction mechanisms are strongly affected by environmental conditions. For this reason, in situ/operando spectroscopy studies under working conditions are necessary to obtain accurate information about the structure-activity relationship. In this review, the recent applications of the in situ/operando spectroscopy methodology on metal catalysts with reducible metal oxides as supports are summarized.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia