Artigos de revistas sobre o tema "Metal oxide semiconductors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Metal oxide semiconductors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Jeon, Yunchae, Donghyun Lee e Hocheon Yoo. "Recent Advances in Metal-Oxide Thin-Film Transistors: Flexible/Stretchable Devices, Integrated Circuits, Biosensors, and Neuromorphic Applications". Coatings 12, n.º 2 (4 de fevereiro de 2022): 204. http://dx.doi.org/10.3390/coatings12020204.
Texto completo da fontePandit, Bhishma, e Jaehee Cho. "AlGaN Ultraviolet Metal–Semiconductor–Metal Photodetectors with Reduced Graphene Oxide Contacts". Applied Sciences 8, n.º 11 (1 de novembro de 2018): 2098. http://dx.doi.org/10.3390/app8112098.
Texto completo da fonteDíaz, Carlos, Marjorie Segovia e Maria Luisa Valenzuela. "Solid State Nanostructured Metal Oxides as Photocatalysts and Their Application in Pollutant Degradation: A Review". Photochem 2, n.º 3 (5 de agosto de 2022): 609–27. http://dx.doi.org/10.3390/photochem2030041.
Texto completo da fonteMatsumoto, Y., H. Koinuma, T. Hasegawa, I. Takeuchi, F. Tsui e Young K. Yoo. "Combinatorial Investigation of Spintronic Materials". MRS Bulletin 28, n.º 10 (outubro de 2003): 734–39. http://dx.doi.org/10.1557/mrs2003.215.
Texto completo da fonteRobertson, John, e Zhaofu Zhang. "Doping limits in p-type oxide semiconductors". MRS Bulletin 46, n.º 11 (novembro de 2021): 1037–43. http://dx.doi.org/10.1557/s43577-021-00211-3.
Texto completo da fonteYoshitake, Michiko. "General Method for Predicting Interface Bonding at Various Oxide–Metal Interfaces". Surfaces 7, n.º 2 (3 de junho de 2024): 414–27. http://dx.doi.org/10.3390/surfaces7020026.
Texto completo da fonteKim, Jungho, e Jiwan Kim. "Synthesis of NiO for various optoelectronic applications". Ceramist 25, n.º 3 (30 de setembro de 2022): 320–31. http://dx.doi.org/10.31613/ceramist.2022.25.3.02.
Texto completo da fonteWu, Jianhao. "Performance comparison and analysis of silicon-based and carbon-based integrated circuits under VLSI". Applied and Computational Engineering 39, n.º 1 (21 de fevereiro de 2024): 244–50. http://dx.doi.org/10.54254/2755-2721/39/20230605.
Texto completo da fonteLi, Jiawei. "Recent Progress of β-Ga2O3 and Transition Metal doped β- Ga2O3 Structure and Properties". Highlights in Science, Engineering and Technology 99 (18 de junho de 2024): 247–52. http://dx.doi.org/10.54097/er1nze77.
Texto completo da fonteAdhikari, Sangeeta, e Debasish Sarkar. "Metal oxide semiconductors for dye degradation". Materials Research Bulletin 72 (dezembro de 2015): 220–28. http://dx.doi.org/10.1016/j.materresbull.2015.08.009.
Texto completo da fonteSosa Lissarrague, Matías H., Sameer Alshehri, Abdullah Alsalhi, Verónica L. Lassalle e Ignacio López Corral. "Heavy Metal Removal from Aqueous Effluents by TiO2 and ZnO Nanomaterials". Adsorption Science & Technology 2023 (24 de janeiro de 2023): 1–15. http://dx.doi.org/10.1155/2023/2728305.
Texto completo da fonteYe, Heqing, Hyeok-Jin Kwon, Xiaowu Tang, Dong Yun Lee, Sooji Nam e Se Hyun Kim. "Direct Patterned Zinc-Tin-Oxide for Solution-Processed Thin-Film Transistors and Complementary Inverter through Electrohydrodynamic Jet Printing". Nanomaterials 10, n.º 7 (3 de julho de 2020): 1304. http://dx.doi.org/10.3390/nano10071304.
Texto completo da fonteGarcia-Peiro, Jose I., Javier Bonet-Aleta, Carlos J. Bueno-Alejo e Jose L. Hueso. "Recent Advances in the Design and Photocatalytic Enhanced Performance of Gold Plasmonic Nanostructures Decorated with Non-Titania Based Semiconductor Hetero-Nanoarchitectures". Catalysts 10, n.º 12 (14 de dezembro de 2020): 1459. http://dx.doi.org/10.3390/catal10121459.
Texto completo da fonteJohn Chelliah, Cyril R. A., e Rajesh Swaminathan. "Current trends in changing the channel in MOSFETs by III–V semiconducting nanostructures". Nanotechnology Reviews 6, n.º 6 (27 de novembro de 2017): 613–23. http://dx.doi.org/10.1515/ntrev-2017-0155.
Texto completo da fonteMeng, Fan-Jian, Rui-Feng Xin e Shan-Xin Li. "Metal Oxide Heterostructures for Improving Gas Sensing Properties: A Review". Materials 16, n.º 1 (27 de dezembro de 2022): 263. http://dx.doi.org/10.3390/ma16010263.
Texto completo da fonteYang, Allen Jian, Kun Han, Ke Huang, Chen Ye, Wen Wen, Ruixue Zhu, Rui Zhu et al. "Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors". Nature Electronics 5, n.º 4 (abril de 2022): 233–40. http://dx.doi.org/10.1038/s41928-022-00753-7.
Texto completo da fonteLi, Haoyang, Yue Zhou, Zhihao Liang, Honglong Ning, Xiao Fu, Zhuohui Xu, Tian Qiu, Wei Xu, Rihui Yao e Junbiao Peng. "High-Entropy Oxides: Advanced Research on Electrical Properties". Coatings 11, n.º 6 (24 de maio de 2021): 628. http://dx.doi.org/10.3390/coatings11060628.
Texto completo da fonteOuyang, Zhuping, Wanxia Wang, Mingjiang Dai, Baicheng Zhang, Jianhong Gong, Mingchen Li, Lihao Qin e Hui Sun. "Research Progress of p-Type Oxide Thin-Film Transistors". Materials 15, n.º 14 (8 de julho de 2022): 4781. http://dx.doi.org/10.3390/ma15144781.
Texto completo da fontePascariu, Petronela, Carmen Gherasim e Anton Airinei. "Metal Oxide Nanostructures (MONs) as Photocatalysts for Ciprofloxacin Degradation". International Journal of Molecular Sciences 24, n.º 11 (31 de maio de 2023): 9564. http://dx.doi.org/10.3390/ijms24119564.
Texto completo da fonteGupta, Himanshi, Naina Gautam, Subodh K. Gautam, R. G. Singh e Fouran Singh. "Semiconductor-to-metal transition in nanocomposites of wide bandgap oxide semiconductors". Journal of Alloys and Compounds 894 (fevereiro de 2022): 162392. http://dx.doi.org/10.1016/j.jallcom.2021.162392.
Texto completo da fonteLin, Chih-Hsuan, e Kuei-Ann Wen. "Power Pad Based on Structure Stacking for Ultralow-Power Three-Axis Capacitive Sensing Applications". Journal of Nanoelectronics and Optoelectronics 16, n.º 4 (1 de abril de 2021): 630–41. http://dx.doi.org/10.1166/jno.2021.2982.
Texto completo da fonteKajitani, Tsuyoshi, Yuzuru Miyazaki, Kei Hayashi, Kunio Yubuta, X. Y. Huang e W. Koshibae. "Thermoelectric Energy Conversion and Ceramic Thermoelectrics". Materials Science Forum 671 (janeiro de 2011): 1–20. http://dx.doi.org/10.4028/www.scientific.net/msf.671.1.
Texto completo da fonteMao, Tan, Mengchen Liu, Liyuan Lin, Youliang Cheng e Changqing Fang. "A Study on Doping and Compound of Zinc Oxide Photocatalysts". Polymers 14, n.º 21 (23 de outubro de 2022): 4484. http://dx.doi.org/10.3390/polym14214484.
Texto completo da fonteKiriakidis, George, e Vassilios Binas. "Metal oxide semiconductors as visible light photocatalysts". Journal of the Korean Physical Society 65, n.º 3 (agosto de 2014): 297–302. http://dx.doi.org/10.3938/jkps.65.297.
Texto completo da fonteSaha, H., e C. Chaudhuri. "Complementary Metal Oxide Semiconductors Microelectromechanical Systems Integration". Defence Science Journal 59, n.º 6 (24 de novembro de 2009): 557–67. http://dx.doi.org/10.14429/dsj.59.1560.
Texto completo da fonteToriumi, Akira. "0.1μm complementary metal–oxide–semiconductors and beyond". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, n.º 6 (novembro de 1996): 4020. http://dx.doi.org/10.1116/1.588635.
Texto completo da fonteAnta, Juan A. "Electron transport in nanostructured metal-oxide semiconductors". Current Opinion in Colloid & Interface Science 17, n.º 3 (junho de 2012): 124–31. http://dx.doi.org/10.1016/j.cocis.2012.02.003.
Texto completo da fonteLee, Sunghwan, Donghun Lee, Fei Qin, Yuxuan Zhang, Molly Rothschild, Han Wook Song e Kwangsoo No. "(Invited) Oxide Electronics and Recent Progress in Bipolar Applications". ECS Meeting Abstracts MA2022-01, n.º 19 (7 de julho de 2022): 1071. http://dx.doi.org/10.1149/ma2022-01191071mtgabs.
Texto completo da fonteConstantinoiu, Izabela, e Cristian Viespe. "ZnO Metal Oxide Semiconductor in Surface Acoustic Wave Sensors: A Review". Sensors 20, n.º 18 (8 de setembro de 2020): 5118. http://dx.doi.org/10.3390/s20185118.
Texto completo da fonteYang, Sheng-Hsiung. "Solution-Processed Metal Oxide Nanostructures for Carrier Transport". Nanomaterials 13, n.º 8 (11 de abril de 2023): 1331. http://dx.doi.org/10.3390/nano13081331.
Texto completo da fonteDadkhah, Mehran, e Jean-Marc Tulliani. "Green Synthesis of Metal Oxides Semiconductors for Gas Sensing Applications". Sensors 22, n.º 13 (21 de junho de 2022): 4669. http://dx.doi.org/10.3390/s22134669.
Texto completo da fonteStewart, Anthony D., Brent P. Gila, Cammy R. Abernathy e S. J. Pearton. "Growth of (SmxGa1−x)2O3 by molecular beam epitaxy". Journal of Vacuum Science & Technology A 40, n.º 6 (dezembro de 2022): 062701. http://dx.doi.org/10.1116/6.0002135.
Texto completo da fonteKaneko, Kentaro, Yoshito Ito, Takayuki Uchida e Shizuo Fujita. "Growth and metal–oxide–semiconductor field-effect transistors of corundum-structured alpha indium oxide semiconductors". Applied Physics Express 8, n.º 9 (1 de setembro de 2015): 095503. http://dx.doi.org/10.7567/apex.8.095503.
Texto completo da fontePark, Myeongjin, Jeongkyun Roh, Jaehoon Lim, Hyunkoo Lee e Donggu Lee. "Double Metal Oxide Electron Transport Layers for Colloidal Quantum Dot Light-Emitting Diodes". Nanomaterials 10, n.º 4 (11 de abril de 2020): 726. http://dx.doi.org/10.3390/nano10040726.
Texto completo da fonteSulaiman, Khaulah, Zubair Ahmad, Muhamad Saipul Fakir, Fadilah Abd Wahab, Shahino Mah Abdullah e Zurianti Abdul Rahman. "Organic Semiconductors: Applications in Solar Photovoltaic and Sensor Devices". Materials Science Forum 737 (janeiro de 2013): 126–32. http://dx.doi.org/10.4028/www.scientific.net/msf.737.126.
Texto completo da fonteDadkhah, Mehran, e Jean-Marc Tulliani. "Nanostructured Metal Oxide Semiconductors towards Greenhouse Gas Detection". Chemosensors 10, n.º 2 (30 de janeiro de 2022): 57. http://dx.doi.org/10.3390/chemosensors10020057.
Texto completo da fonteWang, Yucheng, Yuming Zhang, Tiqiang Pang, Jie Xu, Ziyang Hu, Yuejin Zhu, Xiaoyan Tang, Suzhen Luan e Renxu Jia. "Ionic behavior of organic–inorganic metal halide perovskite based metal-oxide-semiconductor capacitors". Physical Chemistry Chemical Physics 19, n.º 20 (2017): 13002–9. http://dx.doi.org/10.1039/c7cp01799e.
Texto completo da fonteShen, Yinfeng, Yiping Liu, Chao Fan, Qudong Wang, Ming Li, Zhi Yang e Liming Gao. "Enhanced Acetone Sensing Properties Based on Au-Pd Decorated ZnO Nanorod Gas Sensor". Sensors 24, n.º 7 (26 de março de 2024): 2110. http://dx.doi.org/10.3390/s24072110.
Texto completo da fonteXu, Kang, Yi Wang, Yuda Zhao e Yang Chai. "Modulation doping of transition metal dichalcogenide/oxide heterostructures". Journal of Materials Chemistry C 5, n.º 2 (2017): 376–81. http://dx.doi.org/10.1039/c6tc04640a.
Texto completo da fonteLačević, Amela, e Edina Vranić. "Different digital imaging techniques in dental practice". Bosnian Journal of Basic Medical Sciences 4, n.º 2 (20 de maio de 2004): 37–40. http://dx.doi.org/10.17305/bjbms.2004.3412.
Texto completo da fonteConvertino, Clarissa, Cezar Zota, Heinz Schmid, Daniele Caimi, Marilyne Sousa, Kirsten Moselund e Lukas Czornomaz. "InGaAs FinFETs Directly Integrated on Silicon by Selective Growth in Oxide Cavities". Materials 12, n.º 1 (27 de dezembro de 2018): 87. http://dx.doi.org/10.3390/ma12010087.
Texto completo da fonteZhang, Xuan, e Sung Woon Cho. "Composition Engineering of Indium Zinc Oxide Semiconductors for Damage-Free Back-Channel Wet Etching Metallization of Oxide Thin-Film Transistors". Micromachines 14, n.º 10 (27 de setembro de 2023): 1839. http://dx.doi.org/10.3390/mi14101839.
Texto completo da fonteSendi, Aymen, Philippe Menini, Myrtil L. Kahn, Katia Fajerwerg e Pierre Fau. "Effect of Nanostructured Octahedral SnO2 Added with a Binary Mixture P-Type and N-Type Metal Oxide on CO Detection". Proceedings 2, n.º 13 (3 de dezembro de 2018): 986. http://dx.doi.org/10.3390/proceedings2130986.
Texto completo da fonteTutov, E. A., S. V. Ryabtsev, E. E. Tutov e E. N. Bormontov. "Silicon MOS structures with nonstoichiometric metal-oxide semiconductors". Technical Physics 51, n.º 12 (dezembro de 2006): 1604–7. http://dx.doi.org/10.1134/s1063784206120097.
Texto completo da fonteHossein-Babaei, Faramarz, Saeed Masoumi e Amirreza Noori. "Seebeck voltage measurement in undoped metal oxide semiconductors". Measurement Science and Technology 28, n.º 11 (12 de outubro de 2017): 115002. http://dx.doi.org/10.1088/1361-6501/aa82a4.
Texto completo da fonteCAROTTA, M., V. GUIDI, G. MARTINELLI, M. NAGLIATI, D. PUZZOVIO e D. VECCHI. "Sensing of volatile alkanes by metal-oxide semiconductors". Sensors and Actuators B: Chemical 130, n.º 1 (14 de março de 2008): 497–501. http://dx.doi.org/10.1016/j.snb.2007.09.053.
Texto completo da fonteZhou, Xinran, Xiaowei Cheng, Yongheng Zhu, Ahmed A. Elzatahry, Abdulaziz Alghamdi, Yonghui Deng e Dongyuan Zhao. "Ordered porous metal oxide semiconductors for gas sensing". Chinese Chemical Letters 29, n.º 3 (março de 2018): 405–16. http://dx.doi.org/10.1016/j.cclet.2017.06.021.
Texto completo da fonteHamers, Robert J., Scott A. Chambers, Paul E. Evans, Ryan Franking, Zachary Gerbec, Padma Gopalan, Heesuk Kim et al. "Molecular and biomolecular interfaces to metal oxide semiconductors". physica status solidi (c) 7, n.º 2 (fevereiro de 2010): 200–205. http://dx.doi.org/10.1002/pssc.200982472.
Texto completo da fonteSun, Dongjin, Yifan Luo, Marc Debliquy e Chao Zhang. "Graphene-enhanced metal oxide gas sensors at room temperature: a review". Beilstein Journal of Nanotechnology 9 (9 de novembro de 2018): 2832–44. http://dx.doi.org/10.3762/bjnano.9.264.
Texto completo da fonteHultquist, Gunnar, C. Anghel e P. Szakàlos. "Effects of Hydrogen on the Corrosion Resistance of Metallic Materials and Semiconductors". Materials Science Forum 522-523 (agosto de 2006): 139–46. http://dx.doi.org/10.4028/www.scientific.net/msf.522-523.139.
Texto completo da fonte