Literatura científica selecionada sobre o tema "Metal-Organic Frameworks/Coordination Polymers"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Metal-Organic Frameworks/Coordination Polymers".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Metal-Organic Frameworks/Coordination Polymers"

1

Biradha, Kumar, Arunachalam Ramanan e Jagadese J. Vittal. "Coordination Polymers Versus Metal−Organic Frameworks". Crystal Growth & Design 9, n.º 7 (julho de 2009): 2969–70. http://dx.doi.org/10.1021/cg801381p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Maji, Tapas Kumar, e Susumu Kitagawa. "Chemistry of porous coordination polymers". Pure and Applied Chemistry 79, n.º 12 (1 de janeiro de 2007): 2155–77. http://dx.doi.org/10.1351/pac200779122155.

Texto completo da fonte
Resumo:
Remarkable advances in the recent development of porous compounds based upon coordination polymers have paved the way toward functional chemistry having potential applications such as gas storage, separation, and catalysis. From the synthetic point of view, the advantage is a designable framework, which can readily be constructed from building blocks, the so-called bottom-up assembly. Compared with conventional porous materials such as zeolites and activated carbons, porous inorganic-organic hybrid frameworks have higher potential for adsorption of small molecules because of their designability with respect to the coordination geometry around the central metal ion as well as size and probable multifunctionality of bridging organic ligands. Although rigidity and robustness of porous framework with different degree of adsorption are the most studied properties of metal-organic coordination frameworks, there are few studies on dynamic porous frameworks, which could open up a new dimension in materials chemistry.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Batten, Stuart R., Neil R. Champness, Xiao-Ming Chen, Javier Garcia-Martinez, Susumu Kitagawa, Lars Öhrström, Michael O’Keeffe, Myunghyun Paik Suh e Jan Reedijk. "Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013)". Pure and Applied Chemistry 85, n.º 8 (31 de julho de 2013): 1715–24. http://dx.doi.org/10.1351/pac-rec-12-11-20.

Texto completo da fonte
Resumo:
A set of terms, definitions, and recommendations is provided for use in the classification of coordination polymers, networks, and metal–organic frameworks (MOFs). A hierarchical terminology is recommended in which the most general term is coordination polymer. Coordination networks are a subset of coordination polymers and MOFs a further subset of coordination networks. One of the criteria an MOF needs to fulfill is that it contains potential voids, but no physical measurements of porosity or other properties are demanded per se. The use of topology and topology descriptors to enhance the description of crystal structures of MOFs and 3D-coordination polymers is furthermore strongly recommended.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Fan, Xiyu, Fengkai Liu e Guanyu Zheng. "Metal-Organic Frameworks for Drug Delivery". Highlights in Science, Engineering and Technology 6 (27 de julho de 2022): 165–71. http://dx.doi.org/10.54097/hset.v6i.958.

Texto completo da fonte
Resumo:
Nowadays, metal-organic framework (MOF) materials are used in the application of sustained release of drugs. Because of high efficiency, good stability and varied properties, MOFs have shown great potential and a promising future in terms of delivery. In this article, many factors which can have a significant impact on the release during the slow release of a drug were introduced, such as temperature, pH, permeability and toxicity. This article also analyses the performance of different types of MOF in the study of different drugs, including coordination complexes, coordination polymers, and microscale coordination polymers. With an in-depth understanding of the different conditions, the process of designing and producing sophisticated MOF materials can be promised.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Champness, Neil R. "Coordination Polymers: From Metal-Organic Frameworks to Spheres". Angewandte Chemie International Edition 48, n.º 13 (11 de fevereiro de 2009): 2274–75. http://dx.doi.org/10.1002/anie.200806069.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ienco, Andrea, Giulia Tuci, Annalisa Guerri e Ferdinando Costantino. "Mechanochemical Access to Elusive Metal Diphosphinate Coordination Polymer". Crystals 9, n.º 6 (29 de maio de 2019): 283. http://dx.doi.org/10.3390/cryst9060283.

Texto completo da fonte
Resumo:
Several binary metal diphosphinate compounds (ML) have been reported for diphosphinate bonded by a single methylene fragment. In case of longer bridges, binary products are difficult to isolate in crystalline form. Here, using a solvent assisted mechano-chemistry synthesis, we report two new ML crystalline phases, one hydrated and one anhydrous. The hydrated phase is a 2D coordination polymer with an open framework structure. Its network displays a new topology for coordination polymers and metal organic frameworks. The thermal behavior of the two phases has been studied. Finally, the importance of the bridge length is discussed in view of known metal diphosphinate compounds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Tanaka, Daisuke, e Susumu Kitagawa. "Captured Molecules in Coordination Frameworks". MRS Bulletin 32, n.º 7 (julho de 2007): 540–43. http://dx.doi.org/10.1557/mrs2007.103.

Texto completo da fonte
Resumo:
In recent years, a new class of porous materials based on a combination of organic components and metal centers has emerged, namely, microporous coordination polymers (MCPs), in which the chemical properties as well as the pore dimensions affect the incorporation of “guest” molecules within the pores. In this article, we describe the ability of MCPs to store gas molecules, which is ascribed to framework regularity and high porosity, and the unique capacity of certain MCPs to capture molecules selectively by well-defined interactions with organic functional groups.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Batten, Stuart R., e Neil R. Champness. "Coordination polymers and metal–organic frameworks: materials by design". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2084 (13 de janeiro de 2017): 20160032. http://dx.doi.org/10.1098/rsta.2016.0032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Noro, Shin-ichiro, e Takayoshi Nakamura. "Fluorine-functionalized metal–organic frameworks and porous coordination polymers". NPG Asia Materials 9, n.º 9 (setembro de 2017): e433-e433. http://dx.doi.org/10.1038/am.2017.165.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Noro, Shin-ichiro, e Susumu Kitagawa. "ChemInform Abstract: Metal-Organic Frameworks (MOFs) and Coordination Polymers". ChemInform 42, n.º 1 (9 de dezembro de 2010): no. http://dx.doi.org/10.1002/chin.201101221.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Metal-Organic Frameworks/Coordination Polymers"

1

Haja, Mohideen Mohamed Infas. "Novel metal organic frameworks : synthesis, characterisation and functions". Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/1892.

Texto completo da fonte
Resumo:
The synthesis and properties of novel Metal Organic Frameworks were investigated and reported in this thesis. Thirteen new materials have been synthesized and their properties have been discussed with nine of the structures being solved. The most interesting and useful MOF among the thirteen materials is STAM-1, a copper-based Metal Organic Framework in which the starting linker (Benzene-1,3,5-tricarboxylic acid) undergoes selective in situ monoesterification during the synthesis. The monoesterified BTC can be recovered easily from the MOF, opening up MOF synthesis as a “protection” tool for unexpected selectivity in preparative chemistry that is difficult to accomplish using standard organic chemistry approaches. The selective linker derivatisation leads to the formation of a porous MOF with two types of accessible channel; one hydrophilic lined by copper and the other hydrophobic, lined by the ester groups. The unique structure of the pores leads to unprecedented adsorption behaviour, which reacts differently to gases or vapours of dissimilar chemistry and allows them to access different parts of the structure. The structural flexibility of STAM-1 shows significant differences in the kinetics of O₂ and N₂ adsorption, showing potential for new materials to be developed for air separation. Having two types of channel systems, adsorption can be switched between the two channels by judicious choice of the conditions; a thermal trigger to open the hydrophilic channel and a chemical trigger to open the hydrophobic channel. The storage and release capability of NO in STAM-1 was investigated for use in biomedical applications. Successful studies showed the strength of the antibacterial effects of NO loaded STAM-1, by using three different bacterial strains as a test of performance and were found to be bactericidal. Furthermore the antibacterial effects of NO free STAM-1 were also probed and found to be bactericidal even with low concentrations of the material such as 5 wt%. STAM-1 showed some complex magnetic behaviour by displaying strong antiferromagnetic properties at room temperature and ferromagnetic properties at lower temperatures. The antiferromagnetic coupling was observed within the dimer and ferromagnetic coupling between the dimers. This property of ferromagnetism can only be attributed to the corporation of magnetic dimers in the framework. STAM-2 displays a different magnetic behaviour than STAM-1 which shows paramagnetic properties at room temperature and antiferromagnetic properties at lower temperatures. Other novel MOFs were also successfully characterised and their properties were investigated for potential applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Inubushi, Yasutaka. "Studies on Porous Coordination Polymers for Methane Purification". 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225308.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Liang, Weibin. "Carbon Dioxide Adsorption and Catalytic Conversion in Porous Coordination Polymers". Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14541.

Texto completo da fonte
Resumo:
This thesis reports an investigation into carbon dioxide capture and catalysis in several target metal-organic frameworks (MOFs) and porous organic polymers (POPs). In chapter 2, a series of Zr-MOFs were synthesised for potential applications in carbon capture and storage. In the first instance, a novel Zr-based MOF was constructed exclusively from the monocarboxylate ligand formate. Despite the low surface area, the new material exhibited a high affinity for CO2 over nitrogen at room temperature. In addition, the water-stable Zr–tricarboxylate series of frameworks, exhibited tunable porosity by virtue of systematic modulation of the chain length of the monocarboxylate ligand. Last but not least, defect concentrations and their compensating groups have been systematically tuned within UiO-66 frameworks by using modified microwave-assisted solvothermal methods. Both of these factors have a pronounce effect on CO2 and H2O adsorption at low and high pressure. Chapter 3 focuses on the development of a rapid and efficient microwave-assisted solvothermal method for a series of zirconium oxide based MOFs known as MIL-140s. Combined experimental and computational studies have revealed the interplay between the framework pore size and functionality on the CO2 adsorption performance of MIL-140 frameworks. The potential for CO2 photocatalysis in POPs was also explored in chapter 4. A POP with free 2,2’-bipyridyl sites was prepared via Sonogashira-Hagihara coupling and catalytically active moieties ([(α-diimine)Re(CO)3Cl]) were introduced using a post-synthesis metalation method. Thereafter, the Re-containing porous organic polymer was tested for the photocatalytic reduction of CO2. After an induction period, Re-POP produced CO at a stable rate, unless soluble [(bpy)Re(CO)3Cl] (bpy = 2,2´-bipyridine) was added. This provides some of most convincing evidence to date that [(α-diimine)Re(CO)3Cl] catalysts for photocatalytic CO2 reduction decompose via a bimetallic pathway.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cai, Yang. "Toward the rational design of multifunctional nanomaterials: synthesis and characterization of functionalized metal-organic frameworks". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50347.

Texto completo da fonte
Resumo:
Metal-organic frameworks (or coordination polymers) are a recently-identified class of porous polymeric materials, consisting of metal ions or clusters linked together by organic bridging ligands. The major advantage of MOFs over other traditional materials, such as zeolites or activated carbons, is that their synthesis methods have provided an extensive class of crystalline materials with high stability, tunable metrics, and organic functionality. The ability to modify the physical environment of the pores and cavities within MOFs allow tuning of the interactions with guest species, and serves as a route to tailor the chemical stability and/or reactivity of the frameworks for specific applications. The classical way to incorporate functional groups into a MOF is the modification of the organic precursor with specific substituents before synthesizing the MOF itself; we call this approach pre-functionalization method. Functionalization of organic precursors is the initial and necessary step to obtaining functionalized isostructural MOFs and also provides the possibility for the post-synthetic modification of MOFs. However, in some cases, the functional groups may interfere with MOF synthesis and alter the topology of desired MOF. The goal of this proposed research is to explore the possibilities of metal-organic frameworks (MOFs) as novel porous structures, to study the effect of functional groups on the topologies and adsorption behavior of MOFs, and to understand how the synthesis conditions affect the phase purity and the in-situ reaction of ligands.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ding, Bowen. "Localised Charge Transfer in Metal-Organic Frameworks for Catalysis". Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/19852.

Texto completo da fonte
Resumo:
In natural photosynthetic systems localised charge transfer (CT) interactions are employed to prolong photoexcited charge separated states, facilitating conversion to chemical energy. This thesis explores localised CT in redox-active Metal-Organic Frameworks (MOFs) for applications in electrocatalysis and photoelectrocatalysis. Two design strategies are adopted, the first of which incorporates cofacial dimeric units of the photo- and redox-active N,Nʹ-di(4-pyridyl)-1,4,5,8-naphthalenediimide (DPNDI) ligand into a Cd(II) MOF. Crystallographic characterisation of the structural flexibility in this MOF was achieved and linked to an enhanced capability for the MOF to stabilise photoexcited and radical states through localised Intervalence CT interactions. The ability of the material to stabilise the NDI photoexcited radical monoanion state (redox potential -2.1 V vs. SCE) was capitalised on to reduce a discrete organometallic Re(I) based CO2 electrocatalyst to its catalytically active form. Photoelectrocatalytic conversion of CO2 to CO was confirmed at modest reduction potentials of -1.2 V vs. Ag/Ag+. The second approach adopted in this project was the incorporation of the Ni bisdithiolene redox-active unit into a Zn(II) MOF, in the form of the [Ni(pedt)2]- metalloligand (where pedt represents 1-(pyridine-4-yl)ethylene-1,2-dithiolate). The combination of Zn(II) nodes and carboxylate co-ligand coordination resulted in effective electronic isolation of each [Ni(pedt)2]- ligand. The Ni bisdithiolene MOF was successfully applied as a heterogeneous proton reduction electrocatalyst under acidic conditions of 90 mM CH3COOH in 0.1 M [n-Bu4N]PF6/MeCN electrolyte. Tafel analysis of the electrocatalytic behaviour of both the ligand in solution and the MOF demonstrated similarities in catalytic mechanism, evidencing the conservation of molecular electrocatalytic behaviour.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fujiwara, Yu-ichi. "Synthesis and Formation Mechanism of Carbon Materials from Porous Coordination Polymers". Kyoto University, 2018. http://hdl.handle.net/2433/232058.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Brant, Jacilynn A. "Toward the synthesis of designed metal-organic materials". [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002612.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mendes, Ricardo Faria. "Metal-organic frameworks based on flexible bridges". Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22468.

Texto completo da fonte
Resumo:
Doutoramento em Química
Esta tese pretende apresentar o trabalho desenvolvido na preparação de novos Polímeros de Coordenação ou Redes Metalo-Orgânicas de baixa dimensão (1D e 2D) pela auto-montagem de lantanídeos e ligandos orgânicos altamente flexíveis. Numa primeira etapa as condições ideais foram optimizadas utilizando abordagens sintéticas distintas: condições hidrotérmicas e de one-pot, o que permitiu o isolamento de cristais grandes; e a síntese por microondas, que foi a abordagem ideal para reduzir significativamente o tempo de reacção. Todos os materiais foram caracterizados utilizando a combinação de várias técnicas, como FTIR, análise elementar, RMN de estado sólido, microscopia electrónica (SEM e EDS) e termogravimetria. As estruturas cristalinas foram resolvidas utilizando análise de difracção de raios X de cristal único. Num segundo passo, os materiais de baixa dimensão foram utilizados como precursores para obter MOFs de dimensão superiores por transformação Cristal- Cristal, que foram seguidos de perto por análise de raios-X de cristal único. No último passo, as propriedades de alguns materiais foram investigadas, como o uso como potencial catalisadores heterogéneos e como condutores protónicos. Alguns materiais mostraram actividade catalítica notável em várias reacções orgânicas, enquanto um mostrou a maior condução protónica registada até agora para qualquer tipo de material.
This thesis aims to present the work developed in the preparation of new Coordination Polymers or Metal-Organic Frameworks with low dimensions (1D and 2D) by the self-assembly of lanthanides and highly flexible organic linkers. In a first step the ideal conditions were screened using distinct synthetic approaches: hydrothermal and one-pot conditions, which allowed the isolation of large crystals; and microwaveassisted synthesis, which was the ideal approach to reduce significantly the time of reaction. All materials were characterized using the combination of several techniques, such as FTIR, elemental analysis, solid-state NMR, electron microscopy (SEM and EDS) and thermogravimetry. The crystal structures were unveiled using singlecrystal X-ray diffraction analysis. In a second step, the low dimensional materials were used as precursors to obtain higher dimensional MOFs by Single-Crystal to Single-Crystal transformation, which were followed closely by single-crystal X-ray analysis. In a final step, the properties of some materials were investigated, with potential use as heterogeneous catalysts and proton conductors. Some materials showed remarkable catalytic activity in several organic reactions, while one showed the highest proton conduction registered up to now for any kind of material
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Mu, Bin. "Synthesis and gas adsorption study of porous metal-organic framework materials". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41097.

Texto completo da fonte
Resumo:
Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have become the focus of intense study over the past decade due to their potential for advancing a variety of applications including air purification, gas storage, adsorption separations, catalysis, gas sensing, drug delivery, and so on. These materials have some distinct advantages over traditional porous materials such as the well-defined structures, uniform pore sizes, chemically functionalized sorption sites, and potential for post-synthetic modification, etc. Thus, synthesis and adsorption studies of porous MOFs have increased substantially in recent years. Among various prospective applications, air purification is one of the most immediate concerns, which has urgent requirements to improve current nuclear, biological, and chemical (NBC) filters involving commercial and military purposes. Thus, the major goal of this funded project is to search, synthesize, and test these novel hybrid porous materials for adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs), and to install the benchmark for new-generation NBC filters. The objective of this study is three-fold: (i) Advance our understanding of coordination chemistry by synthesizing novel MOFs and characterizing these porous coordination polymers; (ii) Evaluate porous MOF materials for gas-adsorption applications including CO2 capture, CH4 storage, other light gas adsorption and separations, and examine the chemical and physical properties of these solid adsorbents including thermal stability and heat capacity of MOFs; (iii) Evaluate porous MOF materials for next-generation NBC filter media by adsorption breakthrough measurements of TICs on MOFs, and advance our understanding about structure-property relationships of these novel adsorbents.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Tilgner, Dominic [Verfasser], e Rhett [Akademischer Betreuer] Kempe. "The Modification of Porous Coordination Polymers or Metal-Organic Frameworks for Photocatalytic Applications / Dominic Tilgner ; Betreuer: Rhett Kempe". Bayreuth : Universität Bayreuth, 2018. http://d-nb.info/1163319139/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Metal-Organic Frameworks/Coordination Polymers"

1

Ortiz, Oscar L. Coordination polymers and metal organic frameworks: Properties, types, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

MacGillivray, Leonard. Metal-organic frameworks: Design and application. Hoboken, N.J: Wiley, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Leonard, MacGillivray, ed. Metal-organic frameworks: Design and application. Hoboken, N.J: Wiley, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Blay, Vincent, Luis Francisco Bobadilla e Alejandro Cabrera, eds. Zeolites and Metal-Organic Frameworks. NL Amsterdam: Amsterdam University Press, 2018. http://dx.doi.org/10.5117/9789462985568.

Texto completo da fonte
Resumo:
Zeolites are natural or synthetic materials with porous chemical structures that are valuable due to their absorptive and catalytic qualities. Metal-Organic Frameworks (MOFs) are manmade organometallic polymers with similar porous structures. This introductory book, with contributions from top-class researchers from all around the world, examines these materials and explains the different synthetic routes available to prepare zeolites and MOFs. The book also highlights how the substances are similar yet different and how they are used by science and industry in situations ranging from fueling cars to producing drugs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Functional Coordination Polymers and Metal–Organic Frameworks. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-1499-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Coordination Polymers and Metal-Organic Frameworks: Structures and Applications—A Themed Issue in Honor of Professor Christoph Janiak on the Occasion of His 60th Birthday. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-1959-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Burrows, Andrew, Silvia Bordiga, Norbert Stock, Fransesc Llabres i. Xamena e Joseph T. Hupp. Metal Organic Frameworks As Heterogeneous Catalysts. Royal Society of Chemistry, The, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lamberti, Carlo, Andrew Burrows, Silvia Bordiga, Norbert Stock e Sofia Calero. Metal Organic Frameworks As Heterogeneous Catalysts. Royal Society of Chemistry, The, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ghosh, Sujit K. Metal-Organic Frameworks (MOFs) for Environmental Applications. Elsevier, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ghosh, Sujit K. Metal-Organic Frameworks (MOFs) for Environmental Applications. Elsevier, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Metal-Organic Frameworks/Coordination Polymers"

1

Ghosh, Sujit K., e Susumu Kitagawa. "Surface Pore Engineering of Porous Coordination Polymers". In Metal-Organic Frameworks, 165–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470606858.ch5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Horike, Satoshi, e Susumu Kitagawa. "Design of Porous Coordination Polymers/Metal-Organic Frameworks: Past, Present and Future". In Metal-Organic Frameworks, 1–21. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635856.ch1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Friščić, Tomislav. "Toward Mechanochemical Synthesis of Metal-Organic Frameworks: From Coordination Polymers and Lattice Inclusion Compounds to Porous Materials". In Metal-Organic Frameworks, 267–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470606858.ch9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Noro, Shin-Ichiro, e Susumu Kitagawa. "Metal-Organic Frameworks (MOFs) and Coordination Polymers". In The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, 235–69. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470552704.ch7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Pan, Long, Kun-Hao Li, Jeongyong Lee, David H. Olson e Jing Li. "Microporous Metal-Organic Frameworks as Functional Materials for Gas Storage and Separation". In Design and Construction of Coordination Polymers, 307–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470467336.ch11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ma, Sheng-Qian, Christopher D. Collier e Hong-Cai Zhou. "Design and Construction of Metal-Organic Frameworks for Hydrogen Storage and Selective Gas Adsorption". In Design and Construction of Coordination Polymers, 353–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470467336.ch12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Fujita, Makoto. "From Hofmann Complexes to Organic Coordination Networks". In Metal-Organic Frameworks, 1–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470606858.ch1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Rashvandi, Zahra, Fereshteh Rasouli Asl e Fatemeh Ganjali. "Coordination Chemistry of MOFs". In Physicochemical Aspects of Metal-Organic Frameworks, 181–96. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18675-2_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ye, Heng-Yun, Wen Zhang e Ren-Gen Xiong. "Ferroelectric Metal-Organic Coordination Compounds". In Design and Construction of Coordination Polymers, 171–93. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470467336.ch7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Schubert, Ulrich S., Andreas Winter e George R. Newkome. "Metal–organic and Covalent Organic Frameworks Incorporating Ru Species". In Ruthenium-Containing Polymers, 389–427. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75598-0_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Metal-Organic Frameworks/Coordination Polymers"

1

Smirnykh, D. V., E. S. Sushko, A. G. Kicheeva e N. S. Kudryasheva. "THE EFFECT OF METAL-ORGANIC FRAMEWORKS FUNCTIONALIZED WITH MAGNETITE ON THE BIOLUMINESCENT ENZYMATIC ASSAY SYSTEM". In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-214.

Texto completo da fonte
Resumo:
The inhibitory ability of three iron-containing coordination polymers (MOF, Fe3 O4 -MОF and MОF-Fe3 O4 ) was analyzed using a bioluminescent enzymatic assay. The results showed the neutrality of all coordination polymers and a low ROS content of non-functional polymers. Safe operation of these polymers for local drug delivery in therapy of oncological diseases is assumed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Gildenast, Hans, Franziska Busse e Ulli Englert. "Competition of the Donor Atoms - Coordination Chemistry of a O,P,N tritopic Ligand - Complexes, Supramolecules and Metal-Organic Frameworks". In The 2nd International Online Conference on Crystals. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/iocc_2020-07321.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia