Literatura científica selecionada sobre o tema "Mesophyll"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mesophyll".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Mesophyll"
Sulistiarini, Diah, e Eka Fatmawati Tihurua. "Leaf Anatomy of Three Varians of Arundina graminifolia (D. Don.) Hochr". Jurnal Natur Indonesia 11, n.º 2 (20 de novembro de 2012): 78. http://dx.doi.org/10.31258/jnat.11.2.78-82.
Texto completo da fonteLiljebjelke, Karen A., e Vincent R. Franceschi. "Differentiation of Mesophyll and Paraveinal Mesophyll in Soybean Leaf". Botanical Gazette 152, n.º 1 (março de 1991): 34–41. http://dx.doi.org/10.1086/337860.
Texto completo da fonteLersten, Nels R., e Curt L. Brubaker. "Paraveinal mesophyll, and its relationship to vein endings, in Solidago canadensis (Asteraceae)". Canadian Journal of Botany 67, n.º 5 (1 de maio de 1989): 1429–33. http://dx.doi.org/10.1139/b89-190.
Texto completo da fonteKevekordes, K. G., M. E. McCully e M. J. Canny. "The occurrence of an extended bundle sheath system (paraveinal mesophyll) in the legumes". Canadian Journal of Botany 66, n.º 1 (1 de janeiro de 1988): 94–100. http://dx.doi.org/10.1139/b88-014.
Texto completo da fonteKim, InSun, e David G. Fisher. "Structural aspects of the leaves of seven species of Portulaca growing in Hawaii". Canadian Journal of Botany 68, n.º 8 (1 de agosto de 1990): 1803–11. http://dx.doi.org/10.1139/b90-233.
Texto completo da fontePshennikova, L. M. "The implication of leaf anatomical structure for the selective breeding of lilacs". Vavilov Journal of Genetics and Breeding 25, n.º 5 (10 de setembro de 2021): 534–42. http://dx.doi.org/10.18699/vj21.060.
Texto completo da fonteThéroux-Rancourt, Guillaume, Adam B. Roddy, J. Mason Earles, Matthew E. Gilbert, Maciej A. Zwieniecki, C. Kevin Boyce, Danny Tholen, Andrew J. McElrone, Kevin A. Simonin e Craig R. Brodersen. "Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size". Proceedings of the Royal Society B: Biological Sciences 288, n.º 1945 (24 de fevereiro de 2021): 20203145. http://dx.doi.org/10.1098/rspb.2020.3145.
Texto completo da fonteGibadulina, I. I., M. V. Larionov e N. N. Maslennikova. "Anatomical and Morphological Features of the Leaves of Tilia Cordata Mill. As an Indicator of the Adaptive Capabilities of the Species to the Conditions of the Urban Environment". IOP Conference Series: Earth and Environmental Science 988, n.º 3 (1 de fevereiro de 2022): 032082. http://dx.doi.org/10.1088/1755-1315/988/3/032082.
Texto completo da fonteZvereva, G. K. "The structure of the mesophyll and assimilative apparatus of the chloridoid grasses leaves". Проблемы ботаники южной сибири и монголии 19, n.º 2 (8 de outubro de 2020): 202–6. http://dx.doi.org/10.14258/pbssm.2020103.
Texto completo da fonteFujita, Takashi, Ko Noguchi, Hiroshi Ozaki e Ichiro Terashima. "Confirmation of mesophyll signals controlling stomatal responses by a newly devised transplanting method". Functional Plant Biology 46, n.º 5 (2019): 467. http://dx.doi.org/10.1071/fp18250.
Texto completo da fonteTeses / dissertações sobre o assunto "Mesophyll"
Sheard, J. P. "Glucose uptake by pea mesophyll protoplasts". Thesis, University of East Anglia, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235210.
Texto completo da fonteLee, Joonsang. "Influence of the mesophyll on stomatal opening". Thesis, University of Aberdeen, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314415.
Texto completo da fonteNewell, Jane Marie. "Vacuole development in evacuolated oat mesophyll protoplasts". Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295919.
Texto completo da fonteHörtensteiner, Stefan. "Re-formation of vacuoles in evacuolated tobacco mesophyll protoplasts /". [S.l.] : [s.n.], 1993. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10426.
Texto completo da fonteStoll, Marion. "Aktivierende T-DNA-Mutagenese in Nicotiana-tabacum-Mesophyll-Protoplasten". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=96491638X.
Texto completo da fonteShrestha, Arjina. "Variability in mesophyll conductance to CO2 in grain legumes". Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17559.
Texto completo da fonteVosloh, Daniel. "Subcellular compartmentation of primary carbon metabolism in mesophyll cells of Arabidopsis thaliana". Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5553/.
Texto completo da fonteMetabolism in plant cells is highly compartmented, with many pathways involving reactions in more than one compartment. For example, during photosynthesis in leaf mesophyll cells, primary carbon fixation and starch synthesis take place in the chloroplast, whereas sucrose is synthesized in the cytosol and stored in the vacuole. These reactions are tightly regulated to keep a fine balance between the carbon pools of the different compartments and to fulfil the energy needs of the organelles. I applied a technique which fractionates the cells under non-aqueous conditions, whereby the metabolic state is frozen at the time of harvest and held in stasis throughout the fractionation procedure. With the combination of non-aqueous fractionation and mass spectrometry based metabolite measurements (LC-MS/MS, GC-MS) it was possible to investigate the intracellular distributions of the intermediates of photosynthetic carbon metabolism and its products in subsequent metabolic reactions. With the knowledge about the in vivo concentrations of these metabolites under steady state photosynthesis conditions it was possible to calculate the mass action ratio and change in Gibbs free energy in vivo for each reaction in the pathway, to determine which reactions are near equilibrium and which are far removed from equilibrium. The Km value and concentration of each enzyme were compared with the concentrations of its substrates in vivo to assess which reactions are substrate limited and so sensitive to changes in substrate concentration. Several intermediates of the Calvin-Benson cycle are substrates for other pathways, including dihydroxyacetone-phosphate (DHAP,sucrose synthesis), fructose 6-phosphate (Fru6P, starch synthesis), erythrose 4-phosphate (E4P,shikimate pathway) and ribose 5-phosphate (R5P, nucleotide synthesis). Several of the enzymes that metabolise these intermediates, and so lie at branch points in the pathway, are triose-phosphate isomerase (DHAP), transketolase (E4P, Fru6P), sedoheptulose-1,7-bisphosphate aldolase (E4P) and ribose-5-phosphate isomerase (R5P) are not saturated with their respective substrate as the metabolite concentration is lower than the respective Km value. In terms of metabolic control these are the steps that are most sensitive to changes in substrate availability, while the regulated irreversible reactions of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase are relatively insensitive to changes in the concentrations of their substrates. In the pathway of sucrose synthesis it was shown that the concentration of the catalytic binding site of the cytosolic aldolase is lower than the substrate concentration of DHAP, and that the concentration of Suc6P is lower than the Km of sucrose-phosphatase for this substrate. Both the sucrose-phosphate synthase and sucrose-phosphatase reactions are far removed from equilibrium in vivo. In wild type A. thaliana Columbia-0 leaves, all of the ADPGlc was found to be localised in the chloroplasts. ADPglucose pyrophosphorylase is localised to the chloroplast and synthesises ADPGlc from ATP and Glc1P. This distribution argues strongly against the hypothesis proposed by Pozueta-Romero and colleagues that ADPGlc for starch synthesis is produced in the cytosol via ADP-mediated cleavage of sucrose by sucrose synthase. Based on this observation and other published data it was concluded that the generally accepted pathway of starch synthesis from ADPGlc produced by ADPglucose pyrophosphorylase in the chloroplasts is correct, and that the alternative pathway is untenable. Within the pathway of starch synthesis the concentration of ADPGlc was found to be well below the Km value of starch synthase for ADPGlc, indicating that the enzyme is substrate limited. A general finding in the comparison of the Calvin-Benson cycle with the synthesis pathways of sucrose and starch is that many enzymes in the Calvin Benson cycle have active binding site concentrations that are close to the metabolite concentrations, while for nearly all enzymes in the synthesis pathways the active binding site concentrations are much lower than the metabolite concentrations.
Freiesleben, Konstanze. "Biosynthese der Luteolin-Glucuronide im Roggenprimärblatt-Mesophyll: Charakterisierung der Glucuronosyltransferasen". [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971655162.
Texto completo da fonteLin, Quan. "Differentiation of tracheary elements from mesophyll cells of Zinnia elegens L". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358693.
Texto completo da fonteGillham, Malcolm C. "Biosysmetric studies on some mesophyll-feeding leafhoppers associated with trees and shrubs". Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375963.
Texto completo da fonteLivros sobre o assunto "Mesophyll"
Morrison, Paul. Paul Morrison: Mésophylle = mesophyll. Grenoble: Magasin, 2003.
Encontre o texto completo da fonteSheard, Jonathan P. Glucose uptake by pea mesophyll protoplasts. Norwich: University of East Anglia, 1988.
Encontre o texto completo da fonteMcCutcheon, Steve L. Amino acid transport: The special case of a H/L-glutamate cotransport system in Asparagus sprengeri mesophyll cells. St. Catharines [Ont.]: Dept. of Biological Sciences, Brock University, 1987.
Encontre o texto completo da fonteLiljebjelke, Karen Anne. Paraveinal mesophyll differentiation and patterns of DNA and RNA synthesis during soybean leaf ontogeny. 1988.
Encontre o texto completo da fonteMawson, Bruce Thomas. Thermal acclimation of photosynthesis in mesophyll and guard cell chloroplasts of the Arctic plant, "Saxifraga cernua". 1986.
Encontre o texto completo da fonteKrakat, Niclas. Molekularbiologische Erfassung Der Bakteriellen Diversitat in Mesophil Und Thermophil Betriebenen Biogasfermentern Mit Korrelation Zu Verfahrenstechnischen Prozessgrossen. Logos Verlag Berlin, 2012.
Encontre o texto completo da fonteLugilde Yáñez, Juan, Ignacio Bárbara e Viviana Peña. Algas coralinas (Corallinophycidae, Rhodophyta) de Galicia y norte de Portugal. 2022a ed. Servizo de Publicacións da UDC, 2022. http://dx.doi.org/10.17979/spudc.000004.
Texto completo da fonteCapítulos de livros sobre o assunto "Mesophyll"
Meyer, Y. "Mitotic Cycle of Mesophyll Protoplasts". In Proceedings in Life Sciences, 143–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70144-3_17.
Texto completo da fonteMeyer, Yves, Yvette Chartier, Jean Grosset, Isabelle Marty, Christophe Brugidou, Paulo Marinho e Renata Rivera. "Gene Expression in Mesophyll Protoplasts". In Morphogenesis in Plants, 221–36. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1265-7_12.
Texto completo da fonteMeyer, Y., Y. Chartier e J. Grosset. "Why do Mesophyll Protoplasts Dedifferentiate?" In Progress in Plant Protoplast Research, 133–34. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2788-9_47.
Texto completo da fonteSugiyama, Munetaka, e Hiroo Fukuda. "Zinnia mesophyll culture system to study xylogenesis". In Plant Tissue Culture Manual, 91–105. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0303-9_5.
Texto completo da fonteWallin, A. "Isolation and Culture of Apple Mesophyll Protoplasts". In Progress in Plant Protoplast Research, 103–4. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2788-9_35.
Texto completo da fonteJover, R., M. C. Brisa e J. Segura. "Factors Influencing Digitalis Obscura Mesophyll Protoplast Development". In Progress in Plant Protoplast Research, 111–12. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2788-9_39.
Texto completo da fonteSugiyama, Munetaka, e Hiroo Fukuda. "Zinnia mesophyll culture system to study xylogenesis". In Plant Tissue Culture Manual, 1017–31. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0103-2_55.
Texto completo da fonteGenty, Bernard, Sylvie Meyer, Clément Piel, Franz Badeck e Rodolphe Liozon. "CO2 Diffusion Inside Leaf Mesophyll of Ligneous Plants". In Photosynthesis: Mechanisms and Effects, 3961–66. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_919.
Texto completo da fonteUemoto, Kyohei, Takashi Araki e Motomu Endo. "Isolation of Arabidopsis Palisade and Spongy Mesophyll Cells". In Methods in Molecular Biology, 141–48. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8657-6_9.
Texto completo da fonteNyman, Marie, e Anita Wallin. "Plant Regeneration from Strawberry (Fragaria Ananassa) Mesophyll Protoplasts". In Progress in Plant Protoplast Research, 101–2. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2788-9_34.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Mesophyll"
Zvereva, G. K. "The structure of the needles mesophyll in species of the Pinaceae family with flat leaves". In Problems of studying the vegetation cover of Siberia. TSU Press, 2020. http://dx.doi.org/10.17223/978-5-94621-927-3-2020-13.
Texto completo da fonteZhang, Gaina. "Plant regeneration from mesophyll protoplasts of Radix Gentianae Macrophyllae". In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5966163.
Texto completo da fonteKorpiun, P., e B. Büchner. "Frequency dependence of the photothermal signal on mesophyll cell sizes of leaves". In PHOTOACOUSTIC AND PHOTOTHERMAL PHENOMENA. ASCE, 1999. http://dx.doi.org/10.1063/1.58146.
Texto completo da fonteSu, Poyu, Ting-Ying Lee e Szu-Yu Chen. "4D Two-photon Fluorescence Hyperspectral Image of Mesophyll Cells inside Intact Leaves". In Frontiers in Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/fio.2015.jtu4a.85.
Texto completo da fonteGataullina, M. O., A. E. Gribanova, D. N. Fedorin e A. T. Eprintsev. "Features of the functioning of malate dehydrogenase in corn mesophyll under different lighting conditions". In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-115.
Texto completo da fonteMaleva, M. G., O. S. Sinenko, I. S. Kiseleva, D. Latowski e K. Strzałka. "REACTION OF PHOTOSYNTHETIC APPARATUS TO TEMPERATURE STRESS IN BARLEY MESOPHYLL CELLS OF DIFFERENT AGE". In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-496-500.
Texto completo da fonteKim, Hyejeong, Kiwoong Kim e Sang Joon Lee. "Compact and Thermosensitive Micropump Inspired by Plant Leaf". In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69148.
Texto completo da fonteCheryatova, Yu S. "Features of the anatomy of the leaves of Laurocerasus officinalis M. Roem." In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-80.
Texto completo da fonteValeriu Iancu, Valeriu, Laura Adriana Bucur, Verginica Schröder e Manuela Rossemary Apetroaei. "PRELIMINARY STUDIES RELATED TO MICROSCOPY AND THE SEDEM EXPERT SYSTEM PROFILE ON FREEZED-DRIED EXTRACT OF LYTHRI HERBA". In GEOLINKS Conference Proceedings. Saima Consult Ltd, 2021. http://dx.doi.org/10.32008/geolinks2021/b1/v3/16.
Texto completo da fonteRöckmann, Thomas, Getachew Adnew, Thijs Pons, Gerbrand Koren e Wouter Peters. "Exploring the use of 17O-excess in CO2 for estimating mesophyll conductance of C3 and C4 plants". In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12010.
Texto completo da fonteRelatórios de organizações sobre o assunto "Mesophyll"
Lu, P., W. H. Jr Outlaw, B. G. Smith e G. A. Freed. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. A new mechanism for the regulation of stomatal-aperture size in intact leaves: Accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba L. Office of Scientific and Technical Information (OSTI), dezembro de 1996. http://dx.doi.org/10.2172/629405.
Texto completo da fonteHochman, Ayala, Thomas Nash III e Pamela Padgett. Physiological and Biochemical Characterization of the Effects of Oxidant Air Pollutants, Ozone and Gas-phase Nitric Acid, on Plants and Lichens for their Use as Early Warning Biomonitors of these Air Pollutants. United States Department of Agriculture, janeiro de 2011. http://dx.doi.org/10.32747/2011.7697115.bard.
Texto completo da fonteBray, Elizabeth, Zvi Lerner e Alexander Poljakoff-Mayber. The Role of Phytohormones in the Response of Plants to Salinity Stress. United States Department of Agriculture, setembro de 1994. http://dx.doi.org/10.32747/1994.7613007.bard.
Texto completo da fontePhilosoph-Hadas, Sonia, Richard Crain, Shimon Meir, Nehemia Aharoni e Susan Lurie. Calcium-Mediated Signal Transduction during Leaf Senescence. United States Department of Agriculture, novembro de 1995. http://dx.doi.org/10.32747/1995.7604925.bard.
Texto completo da fonteShahak, Yosepha, e Donald R. Ort. Physiological Bases for Impaired Photosynthetic Performance of Chilling-Sensitive Fruit Trees. United States Department of Agriculture, maio de 2001. http://dx.doi.org/10.32747/2001.7575278.bard.
Texto completo da fontePell, Eva J., Sarah M. Assmann, Amnon Schwartz e Hava Steinberger. Ozone Altered Stomatal/Guard Cell Function: Whole Plant and Single Cell Analysis. United States Department of Agriculture, dezembro de 2000. http://dx.doi.org/10.32747/2000.7573082.bard.
Texto completo da fonte