Artigos de revistas sobre o tema "Memristance"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Memristance".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yang, Le, e Zhixia Ding. "A Memristor-Based High-Resolution A/D Converter". Electronics 11, n.º 9 (3 de maio de 2022): 1470. http://dx.doi.org/10.3390/electronics11091470.
Texto completo da fonteUkil, Abhisek. "Memristance View of Piezoelectricity". IEEE Sensors Journal 11, n.º 10 (outubro de 2011): 2514–17. http://dx.doi.org/10.1109/jsen.2011.2114878.
Texto completo da fonteMartinsen, Ø. G., S. Grimnes, C. A. Lütken e G. K. Johnsen. "Memristance in human skin". Journal of Physics: Conference Series 224 (1 de abril de 2010): 012071. http://dx.doi.org/10.1088/1742-6596/224/1/012071.
Texto completo da fonteCam, Zehra Gulru, e Herman Sedef. "A New Floating Memristance Simulator Circuit Based on Second Generation Current Conveyor". Journal of Circuits, Systems and Computers 26, n.º 02 (3 de novembro de 2016): 1750029. http://dx.doi.org/10.1142/s0218126617500293.
Texto completo da fonteYu, Bo, Yifei Pu, Qiuyan He e Xiao Yuan. "Principle and Application of Frequency-Domain Characteristic Analysis of Fractional-Order Memristor". Micromachines 13, n.º 9 (12 de setembro de 2022): 1512. http://dx.doi.org/10.3390/mi13091512.
Texto completo da fonteMUTLU, Reşat, e Ertuğrul KARAKULAK. "A methodology for memristance calculation". TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES 22 (2014): 121–31. http://dx.doi.org/10.3906/elk-1205-16.
Texto completo da fonteBanchuin, Rawid. "On the Memristances, Parameters, and Analysis of the Fractional Order Memristor". Active and Passive Electronic Components 2018 (1 de novembro de 2018): 1–14. http://dx.doi.org/10.1155/2018/3408480.
Texto completo da fonteLe, Minh, Thi Kim Hang Pham e Son Ngoc Truong. "Noise and Memristance Variation Tolerance of Single Crossbar Architectures for Neuromorphic Image Recognition". Micromachines 12, n.º 6 (13 de junho de 2021): 690. http://dx.doi.org/10.3390/mi12060690.
Texto completo da fonteLiu, Xiaoxin, Lanqing Zou, Chenyang Huang, Na Bai, Kanhao Xue, Huajun Sun e Xiangshui Miao. "Analog Memristor-Based Dynamic Programmable Analog Filter". Journal of Physics: Conference Series 2356, n.º 1 (1 de outubro de 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2356/1/012008.
Texto completo da fonteBunnam, Thanasin, Ahmed Soltan, Danil Sokolov, Oleg Maevsky e Alex Yakovlev. "Toward Designing Thermally-Aware Memristance Decoder". IEEE Transactions on Circuits and Systems I: Regular Papers 66, n.º 11 (novembro de 2019): 4337–47. http://dx.doi.org/10.1109/tcsi.2019.2925021.
Texto completo da fonteDu, Nan, Yao Shuai, Wenbo Luo, Christian Mayr, René Schüffny, Oliver G. Schmidt e Heidemarie Schmidt. "Practical guide for validated memristance measurements". Review of Scientific Instruments 84, n.º 2 (fevereiro de 2013): 023903. http://dx.doi.org/10.1063/1.4775718.
Texto completo da fonteTanaka, H., Y. Tadokoro e H. Iizuka. "Memristance enhancement by external voltage source". Electronics Letters 49, n.º 23 (novembro de 2013): 1446–48. http://dx.doi.org/10.1049/el.2013.2311.
Texto completo da fonteKoner, Subhadeep, Joseph S. Najem, Md Sakib Hasan e Stephen A. Sarles. "Memristive plasticity in artificial electrical synapses via geometrically reconfigurable, gramicidin-doped biomembranes". Nanoscale 11, n.º 40 (2019): 18640–52. http://dx.doi.org/10.1039/c9nr07288h.
Texto completo da fonteLi, Y., Y. P. Zhong, J. J. Zhang, X. H. Xu, Q. Wang, L. Xu, H. J. Sun e X. S. Miao. "Intrinsic memristance mechanism of crystalline stoichiometric Ge2Sb2Te5". Applied Physics Letters 103, n.º 4 (22 de julho de 2013): 043501. http://dx.doi.org/10.1063/1.4816283.
Texto completo da fonteTaşkıran, Zehra Gülru Çam, e Murat Taşkıran. "Second Generation Current Conveyor Based Floating Fractional Order Memristance Simulator and a New Dynamical System". Cybernetics and Information Technologies 20, n.º 5 (1 de dezembro de 2020): 68–80. http://dx.doi.org/10.2478/cait-2020-0041.
Texto completo da fonteBudhathoki, Ram Kaji, Maheshwar P. D. Sah, Changju Yang, Hyongsuk Kim e Leon Chua. "Transient Behaviors of Multiple Memristor Circuits Based on Flux Charge Relationship". International Journal of Bifurcation and Chaos 24, n.º 02 (fevereiro de 2014): 1430006. http://dx.doi.org/10.1142/s0218127414300067.
Texto completo da fonteKhadar Basha, N., e Dr T Ramashri. "Operating conditions analysis of memristor model". International Journal of Engineering & Technology 7, n.º 4 (17 de setembro de 2018): 2291. http://dx.doi.org/10.14419/ijet.v7i4.9684.
Texto completo da fonteRamadoss, Janarthanan, Othman Abdullah Almatroud, Shaher Momani, Viet-Thanh Pham e Vo Phu Thoai. "Discrete Memristance and Nonlinear Term for Designing Memristive Maps". Symmetry 14, n.º 10 (11 de outubro de 2022): 2110. http://dx.doi.org/10.3390/sym14102110.
Texto completo da fonteTsoukalas, Dimitris, e Emanuele Verrelli. "Inorganic Nanoparticles for either Charge Storage or Memristance Modulation". Advances in Science and Technology 77 (setembro de 2012): 196–204. http://dx.doi.org/10.4028/www.scientific.net/ast.77.196.
Texto completo da fonteBiolek, Zdeněk, Dalibor Biolek, Viera Biolková, Zdeněk Kolka, Alon Ascoli e Ronald Tetzlaff. "Analysis of memristors with nonlinear memristance versus state maps". International Journal of Circuit Theory and Applications 45, n.º 11 (25 de janeiro de 2017): 1814–32. http://dx.doi.org/10.1002/cta.2314.
Texto completo da fonteKhan, Samiur Rahman, AlaaDdin Al-Shidaifat e Hanjung Song. "Efficient Memristive Circuit Design of Neural Network-Based Associative Memory for Pavlovian Conditional Reflex". Micromachines 13, n.º 10 (15 de outubro de 2022): 1744. http://dx.doi.org/10.3390/mi13101744.
Texto completo da fonteCam Taskiran, Zehra Gulru, Murat Taşkıran, Mehmet Kıllıoğlu, Nihan Kahraman e Herman Sedef. "A novel memristive true random number generator design". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 38, n.º 6 (24 de outubro de 2019): 1931–47. http://dx.doi.org/10.1108/compel-11-2018-0463.
Texto completo da fonteMaundy, B. J., A. S. Elwakil e C. Psychalinos. "CMOS Realization of All-Positive Pinched Hysteresis Loops". Complexity 2017 (2017): 1–15. http://dx.doi.org/10.1155/2017/7863095.
Texto completo da fonteTanaka, Hiroya, Yukihiro Tadokoro e Hideo Iizuka. "Optimal condition of memristance enhancement circuit using external voltage source". AIP Advances 4, n.º 5 (maio de 2014): 057117. http://dx.doi.org/10.1063/1.4879287.
Texto completo da fonteJunsangsri, Pilin, e Fabrizio Lombardi. "Design of a Hybrid Memory Cell Using Memristance and Ambipolarity". IEEE Transactions on Nanotechnology 12, n.º 1 (janeiro de 2013): 71–80. http://dx.doi.org/10.1109/tnano.2012.2229715.
Texto completo da fonteAlialy, Sahar, Koorosh Esteki, Mauro S. Ferreira, John J. Boland e Claudia Gomes da Rocha. "Nonlinear ion drift-diffusion memristance description of TiO2 RRAM devices". Nanoscale Advances 2, n.º 6 (2020): 2514–24. http://dx.doi.org/10.1039/d0na00195c.
Texto completo da fonteTorres-Costa, Vicente, Ermei Mäkilä, Sari Granroth, Edwin Kukk e Jarno Salonen. "Synaptic and Fast Switching Memristance in Porous Silicon-Based Structures". Nanomaterials 9, n.º 6 (31 de maio de 2019): 825. http://dx.doi.org/10.3390/nano9060825.
Texto completo da fonteAdhikari, Shyam Prasad, Hyongsuk Kim, Bai-Sun Kong e Leon O. Chua. "Memristance drift avoidance with charge bouncing for memristor-based nonvolatile memories". Journal of the Korean Physical Society 61, n.º 9 (novembro de 2012): 1418–21. http://dx.doi.org/10.3938/jkps.61.1418.
Texto completo da fonteLiu, Hai-Jun, Zhi-Wei Li, Hong-Qi Yu, Zhao-Lin Sun e Hong-Shan Nie. "Memristance controlling approach based on modification of linear M — q curve". Chinese Physics B 23, n.º 11 (novembro de 2014): 118402. http://dx.doi.org/10.1088/1674-1056/23/11/118402.
Texto completo da fonteZhang, Kun, Yan-ling Cao, Yue-wen Fang, Qiang Li, Jie Zhang, Chun-gang Duan, Shi-shen Yan et al. "Electrical control of memristance and magnetoresistance in oxide magnetic tunnel junctions". Nanoscale 7, n.º 14 (2015): 6334–39. http://dx.doi.org/10.1039/c5nr00522a.
Texto completo da fonteJuhas, Anamarija, e Stanisa Dautovic. "Computation of Pinched Hysteresis Loop Area From Memristance-vs-State Map". IEEE Transactions on Circuits and Systems II: Express Briefs 66, n.º 4 (abril de 2019): 677–81. http://dx.doi.org/10.1109/tcsii.2018.2868384.
Texto completo da fonteYang, Le, Zhigang Zeng e Shiping Wen. "A full-function Pavlov associative memory implementation with memristance changing circuit". Neurocomputing 272 (janeiro de 2018): 513–19. http://dx.doi.org/10.1016/j.neucom.2017.07.020.
Texto completo da fonteCam Taskiran, Zehra Gulru, Umut Engin Ayten e Herman Sedef. "Dual-Output Operational Transconductance Amplifier-Based Electronically Controllable Memristance Simulator Circuit". Circuits, Systems, and Signal Processing 38, n.º 1 (25 de maio de 2018): 26–40. http://dx.doi.org/10.1007/s00034-018-0856-y.
Texto completo da fonteRomán Acevedo, W., C. A. M. van den Bosch, M. H. Aguirre, C. Acha, A. Cavallaro, C. Ferreyra, M. J. Sánchez, L. Patrone, A. Aguadero e D. Rubi. "Large memcapacitance and memristance at Nb:SrTiO3/La0.5Sr0.5Mn0.5Co0.5O3-δ topotactic redox interface". Applied Physics Letters 116, n.º 6 (10 de fevereiro de 2020): 063502. http://dx.doi.org/10.1063/1.5131854.
Texto completo da fonteShuai, Yao, Nan Du, Xin Ou, Wenbo Luo, Shengqiang Zhou, Oliver G. Schmidt e Heidemarie Schmidt. "Improved retention of nonvolatile bipolar BiFeO3resistive memories validated by memristance measurements". physica status solidi (c) 10, n.º 4 (13 de março de 2013): 636–39. http://dx.doi.org/10.1002/pssc.201200881.
Texto completo da fonteLiu, Ruxin, Ruixin Dong, Xunling Yan, Shuai Yuan, Dong Zhang, Bing Yang e Xia Xiao. "Two-parameter multi-state memory device based on memristance and memcapacitance characteristics". Applied Physics Express 11, n.º 11 (26 de outubro de 2018): 114103. http://dx.doi.org/10.7567/apex.11.114103.
Texto completo da fonteHoward, Sebastian A., Christopher N. Singh, Galo J. Paez, Matthew J. Wahila, Linda W. Wangoh, Shawn Sallis, Keith Tirpak et al. "Direct observation of delithiation as the origin of analog memristance in LixNbO2". APL Materials 7, n.º 7 (julho de 2019): 071103. http://dx.doi.org/10.1063/1.5108525.
Texto completo da fontePratyusha, Nune, e Santanu Mandal*. "Realization of Memory Effect on Hysteresis Lobe Area of the TiO2 Based HP Memristor". International Journal of Innovative Technology and Exploring Engineering 8, n.º 12 (30 de outubro de 2019): 321–24. http://dx.doi.org/10.35940/ijitee.l1982.1081219.
Texto completo da fonteCarrasco-Aguilar, Miguel Angel, Carlos Sanchez-López e Francisco Epimenio Morales-López. "Current-controlled grounded memristor emulator circuit based on analog multiplier". Journal of Applied Research and Technology 20, n.º 3 (1 de julho de 2022): 347–54. http://dx.doi.org/10.22201/icat.24486736e.2022.20.3.932.
Texto completo da fonteLi, Guodong, Huiyan Zhong, Wenxia Xu e Xiangliang Xu. "Two Modified Chaotic Maps Based on Discrete Memristor Model". Symmetry 14, n.º 4 (12 de abril de 2022): 800. http://dx.doi.org/10.3390/sym14040800.
Texto completo da fonteRodriguez, N., D. Maldonado, F. J. Romero, F. J. Alonso, A. M. Aguilera, A. Godoy, F. Jimenez-Molinos, F. G. Ruiz e J. B. Roldan. "Resistive Switching and Charge Transport in Laser-Fabricated Graphene Oxide Memristors: A Time Series and Quantum Point Contact Modeling Approach". Materials 12, n.º 22 (13 de novembro de 2019): 3734. http://dx.doi.org/10.3390/ma12223734.
Texto completo da fonteMarkovic, Ivo, Milka Potrebic, Dejan Tosic e Zlata Cvetkovic. "Comparison of memristor models for microwave circuit simulations in time and frequency domain". Facta universitatis - series: Electronics and Energetics 32, n.º 1 (2019): 65–74. http://dx.doi.org/10.2298/fuee1901065m.
Texto completo da fonteBudhathoki, Ram Kaji. "Comparative Analysis of Memristor based Synaptic Circuits for Neuromorphic Architectures". SCITECH Nepal 13, n.º 1 (30 de setembro de 2018): 32–39. http://dx.doi.org/10.3126/scitech.v13i1.23499.
Texto completo da fonteMladenov, Valeri, e Stoyan Kirilov. "ANALYSIS OF AN ANTI-PARALLEL MEMRISTOR CIRCUIT". Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska 8, n.º 2 (30 de maio de 2018): 9–14. http://dx.doi.org/10.5604/01.3001.0012.0696.
Texto completo da fonteWANG, LIDAN, EMMANUEL DRAKAKIS, SHUKAI DUAN, PENGFEI HE e XIAOFENG LIAO. "MEMRISTOR MODEL AND ITS APPLICATION FOR CHAOS GENERATION". International Journal of Bifurcation and Chaos 22, n.º 08 (agosto de 2012): 1250205. http://dx.doi.org/10.1142/s0218127412502057.
Texto completo da fonteMARINCA, Bogdan, e Vasile MARINCA. "Analytical method for nonlinear memristive systems". Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science 24, n.º 2 (28 de junho de 2023): 159–65. http://dx.doi.org/10.59277/pra-ser.a.24.2.08.
Texto completo da fonteMaier, P., F. Hartmann, J. Gabel, M. Frank, S. Kuhn, P. Scheiderer, B. Leikert et al. "Gate-tunable, normally-on to normally-off memristance transition in patterned LaAlO3/SrTiO3 interfaces". Applied Physics Letters 110, n.º 9 (27 de fevereiro de 2017): 093506. http://dx.doi.org/10.1063/1.4977834.
Texto completo da fontePickett, Matthew D., Julien Borghetti, J. Joshua Yang, Gilberto Medeiros-Ribeiro e R. Stanley Williams. "Coexistence of Memristance and Negative Differential Resistance in a Nanoscale Metal-Oxide-Metal System". Advanced Materials 23, n.º 15 (22 de fevereiro de 2011): 1730–33. http://dx.doi.org/10.1002/adma.201004497.
Texto completo da fonteYavuz, Kutluhan Kürşad, Ertuğrul Karakulak e Reşat Mutlu. "Memristor-based series voltage regulators". Journal of Electrical Engineering 70, n.º 6 (1 de dezembro de 2019): 465–72. http://dx.doi.org/10.2478/jee-2019-0079.
Texto completo da fonteTemple, Rowan C., Mark C. Rosamond, Jamie R. Massey, Trevor P. Almeida, Edmund H. Linfield, Damien McGrouther, Stephen McVitie, Thomas A. Moore e Christopher H. Marrows. "Phase domain boundary motion and memristance in gradient-doped FeRh nanopillars induced by spin injection". Applied Physics Letters 118, n.º 12 (22 de março de 2021): 122403. http://dx.doi.org/10.1063/5.0038950.
Texto completo da fonte