Artigos de revistas sobre o tema "Membrane nanodomains"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Membrane nanodomains".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Okamoto, Yukihiro, Kaito Hamaguchi, Mayo Watanabe, Nozomi Watanabe e Hiroshi Umakoshi. "Characterization of Phase Separated Planar Lipid Bilayer Membrane by Fluorescence Ratio Imaging and Scanning Probe Microscope". Membranes 12, n.º 8 (9 de agosto de 2022): 770. http://dx.doi.org/10.3390/membranes12080770.
Texto completo da fonteSamhan-Arias, Alejandro K., Joana Poejo, Dorinda Marques-da-Silva, Oscar H. Martínez-Costa e Carlos Gutierrez-Merino. "Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling?" Molecules 28, n.º 23 (2 de dezembro de 2023): 7909. http://dx.doi.org/10.3390/molecules28237909.
Texto completo da fonteSilvius, John R. "Membrane Nanodomains". Colloquium Series on Building Blocks of the Cell: Cell Structure and Function 1, n.º 1 (28 de fevereiro de 2013): 1–103. http://dx.doi.org/10.4199/c00076ed1v01y201303bbc001.
Texto completo da fonteLiang, Pengbo, Thomas F. Stratil, Claudia Popp, Macarena Marín, Jessica Folgmann, Kirankumar S. Mysore, Jiangqi Wen e Thomas Ott. "Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains". Proceedings of the National Academy of Sciences 115, n.º 20 (30 de abril de 2018): 5289–94. http://dx.doi.org/10.1073/pnas.1721868115.
Texto completo da fonteFukata, Yuko, Ariane Dimitrov, Gaelle Boncompain, Ole Vielemeyer, Franck Perez e Masaki Fukata. "Local palmitoylation cycles define activity-regulated postsynaptic subdomains". Journal of Cell Biology 202, n.º 1 (8 de julho de 2013): 145–61. http://dx.doi.org/10.1083/jcb.201302071.
Texto completo da fonteDrab, Mitja, David Stopar, Veronika Kralj-Iglič e Aleš Iglič. "Inception Mechanisms of Tunneling Nanotubes". Cells 8, n.º 6 (21 de junho de 2019): 626. http://dx.doi.org/10.3390/cells8060626.
Texto completo da fonteMesarec, Luka, Mitja Drab, Samo Penič, Veronika Kralj-Iglič e Aleš Iglič. "On the Role of Curved Membrane Nanodomains and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding". International Journal of Molecular Sciences 22, n.º 5 (26 de fevereiro de 2021): 2348. http://dx.doi.org/10.3390/ijms22052348.
Texto completo da fonteCebecauer, Marek, Mariana Amaro, Piotr Jurkiewicz, Maria João Sarmento, Radek Šachl, Lukasz Cwiklik e Martin Hof. "Membrane Lipid Nanodomains". Chemical Reviews 118, n.º 23 (26 de outubro de 2018): 11259–97. http://dx.doi.org/10.1021/acs.chemrev.8b00322.
Texto completo da fonteMa, Yuanqing, Elizabeth Hinde e Katharina Gaus. "Nanodomains in biological membranes". Essays in Biochemistry 57 (6 de fevereiro de 2015): 93–107. http://dx.doi.org/10.1042/bse0570093.
Texto completo da fonteTraeger, Jeremiah, Dehong Hu, Mengran Yang, Gary Stacey e Galya Orr. "Super-Resolution Imaging of Plant Receptor-Like Kinases Uncovers Their Colocalization and Coordination with Nanometer Resolution". Membranes 13, n.º 2 (21 de janeiro de 2023): 142. http://dx.doi.org/10.3390/membranes13020142.
Texto completo da fonteKure, Jakob L., Thommie Karlsson, Camilla B. Andersen, B. Christoffer Lagerholm, Vesa Loitto, Karl-Eric Magnusson e Eva C. Arnspang. "Using kICS to Reveal Changed Membrane Diffusion of AQP-9 Treated with Drugs". Membranes 11, n.º 8 (28 de julho de 2021): 568. http://dx.doi.org/10.3390/membranes11080568.
Texto completo da fonteLi, Guangtao, Qing Wang, Shinako Kakuda e Erwin London. "Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids". Journal of Lipid Research 61, n.º 5 (21 de janeiro de 2020): 758–66. http://dx.doi.org/10.1194/jlr.ra119000565.
Texto completo da fonteStelate, Ayoub, Eva Tihlaříková, Kateřina Schwarzerová, Vilém Neděla e Jan Petrášek. "Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin". Biomolecules 11, n.º 10 (26 de setembro de 2021): 1407. http://dx.doi.org/10.3390/biom11101407.
Texto completo da fonteAshrafzadeh, Parham, e Ingela Parmryd. "Methods applicable to membrane nanodomain studies?" Essays in Biochemistry 57 (6 de fevereiro de 2015): 57–68. http://dx.doi.org/10.1042/bse0570057.
Texto completo da fonteHuang, Dingquan, Yanbiao Sun, Zhiming Ma, Meiyu Ke, Yong Cui, Zichen Chen, Chaofan Chen et al. "Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization". Proceedings of the National Academy of Sciences 116, n.º 42 (1 de outubro de 2019): 21274–84. http://dx.doi.org/10.1073/pnas.1911892116.
Texto completo da fonteVallés, Ana Sofía, e Francisco J. Barrantes. "Nanoscale Sub-Compartmentalization of the Dendritic Spine Compartment". Biomolecules 11, n.º 11 (15 de novembro de 2021): 1697. http://dx.doi.org/10.3390/biom11111697.
Texto completo da fonteSarmento, Maria J., Joana C. Ricardo, Mariana Amaro e Radek Šachl. "Organization of gangliosides into membrane nanodomains". FEBS Letters 594, n.º 22 (10 de julho de 2020): 3668–97. http://dx.doi.org/10.1002/1873-3468.13871.
Texto completo da fonteNguyen, Ngoc, Amber Lewis, Thuong Pham, Donald Sikazwe e Kwan H. Cheng. "Exploring the Role of Anionic Lipid Nanodomains in the Membrane Disruption and Protein Folding of Human Islet Amyloid Polypeptide Oligomers on Lipid Membrane Surfaces Using Multiscale Molecular Dynamics Simulations". Molecules 28, n.º 10 (19 de maio de 2023): 4191. http://dx.doi.org/10.3390/molecules28104191.
Texto completo da fonteFukata, Masaki, Atsushi Sekiya, Tatsuro Murakami, Norihiko Yokoi e Yuko Fukata. "Postsynaptic nanodomains generated by local palmitoylation cycles". Biochemical Society Transactions 43, n.º 2 (1 de abril de 2015): 199–204. http://dx.doi.org/10.1042/bst20140238.
Texto completo da fonteYurtsever, Ayhan, Takeshi Yoshida, Arash Badami Behjat, Yoshihiro Araki, Rikinari Hanayama e Takeshi Fukuma. "Structural and mechanical characteristics of exosomes from osteosarcoma cells explored by 3D-atomic force microscopy". Nanoscale 13, n.º 13 (2021): 6661–77. http://dx.doi.org/10.1039/d0nr09178b.
Texto completo da fonteSchneider, Falk, Dominic Waithe, Mathias P. Clausen, Silvia Galiani, Thomas Koller, Gunes Ozhan, Christian Eggeling e Erdinc Sezgin. "Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS". Molecular Biology of the Cell 28, n.º 11 (junho de 2017): 1507–18. http://dx.doi.org/10.1091/mbc.e16-07-0536.
Texto completo da fonteArumugam, Senthil, e Patricia Bassereau. "Membrane nanodomains: contribution of curvature and interaction with proteins and cytoskeleton". Essays in Biochemistry 57 (6 de fevereiro de 2015): 109–19. http://dx.doi.org/10.1042/bse0570109.
Texto completo da fonteNika, Konstantina, e Oreste Acuto. "Membrane nanodomains in T-cell antigen receptor signalling". Essays in Biochemistry 57 (6 de fevereiro de 2015): 165–75. http://dx.doi.org/10.1042/bse0570165.
Texto completo da fonteKarner, Andreas, Benedikt Nimmervoll, Birgit Plochberger, Enrico Klotzsch, Andreas Horner, Denis G. Knyazev, Roland Kuttner et al. "Tuning membrane protein mobility by confinement into nanodomains". Nature Nanotechnology 12, n.º 3 (14 de novembro de 2016): 260–66. http://dx.doi.org/10.1038/nnano.2016.236.
Texto completo da fonteOtt, Thomas. "Membrane nanodomains and microdomains in plant–microbe interactions". Current Opinion in Plant Biology 40 (dezembro de 2017): 82–88. http://dx.doi.org/10.1016/j.pbi.2017.08.008.
Texto completo da fontede Wit, Gabrielle, John S. H. Danial, Philipp Kukura e Mark I. Wallace. "Dynamic label-free imaging of lipid nanodomains". Proceedings of the National Academy of Sciences 112, n.º 40 (23 de setembro de 2015): 12299–303. http://dx.doi.org/10.1073/pnas.1508483112.
Texto completo da fonteGarcía-Arribas, Aritz B., Félix M. Goñi e Alicia Alonso. "Lipid Self-Assemblies under the Atomic Force Microscope". International Journal of Molecular Sciences 22, n.º 18 (18 de setembro de 2021): 10085. http://dx.doi.org/10.3390/ijms221810085.
Texto completo da fonteHeberle, Frederick A., Milka Doktorova, Haden L. Scott, Allison D. Skinkle, M. Neal Waxham e Ilya Levental. "Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy". Proceedings of the National Academy of Sciences 117, n.º 33 (5 de agosto de 2020): 19943–52. http://dx.doi.org/10.1073/pnas.2002200117.
Texto completo da fonteDong, Guohua, Suzhi Li, Mouteng Yao, Ziyao Zhou, Yong-Qiang Zhang, Xu Han, Zhenlin Luo et al. "Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation". Science 366, n.º 6464 (24 de outubro de 2019): 475–79. http://dx.doi.org/10.1126/science.aay7221.
Texto completo da fonteHolowka, David, e Barbara Baird. "Nanodomains in early and later phases of FcɛRI signalling". Essays in Biochemistry 57 (6 de fevereiro de 2015): 147–63. http://dx.doi.org/10.1042/bse0570147.
Texto completo da fonteTran, Tuan Minh, Choon-Peng Chng, Xiaoming Pu, Zhiming Ma, Xiao Han, Xiaolin Liu, Liang Yang, Changjin Huang e Yansong Miao. "Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains". Plant Cell 34, n.º 1 (13 de novembro de 2021): 395–417. http://dx.doi.org/10.1093/plcell/koab276.
Texto completo da fonteLee, Sungsu, Han Yen Tan, Ivayla I. Geneva, Aleksandr Kruglov e Peter D. Calvert. "Actin filaments partition primary cilia membranes into distinct fluid corrals". Journal of Cell Biology 217, n.º 8 (26 de junho de 2018): 2831–49. http://dx.doi.org/10.1083/jcb.201711104.
Texto completo da fonteTapken, W., e A. S. Murphy. "Membrane nanodomains in plants: capturing form, function, and movement". Journal of Experimental Botany 66, n.º 6 (27 de fevereiro de 2015): 1573–86. http://dx.doi.org/10.1093/jxb/erv054.
Texto completo da fonteChen, Xi, Angela Jen, Alice Warley, M. Jayne Lawrence, Peter J. Quinn e Roger J. Morris. "Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition". Biochemical Journal 417, n.º 2 (23 de dezembro de 2008): 525–33. http://dx.doi.org/10.1042/bj20081385.
Texto completo da fonteSchneider, Katharina, Eric Seemann, Lutz Liebmann, Rashmi Ahuja, Dennis Koch, Martin Westermann, Christian A. Hübner, Michael M. Kessels e Britta Qualmann. "ProSAP1 and membrane nanodomain-associated syndapin I promote postsynapse formation and function". Journal of Cell Biology 205, n.º 2 (21 de abril de 2014): 197–215. http://dx.doi.org/10.1083/jcb.201307088.
Texto completo da fonteYang, Xiaojuan, e Wim Annaert. "The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication". Membranes 11, n.º 4 (30 de março de 2021): 248. http://dx.doi.org/10.3390/membranes11040248.
Texto completo da fonteChen, Yong, Lingyun Shao, Zahida Ali, Jiye Cai e Zheng W. Chen. "NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal Vγ2Vδ2 T-cell expansion". Blood 111, n.º 8 (15 de abril de 2008): 4220–32. http://dx.doi.org/10.1182/blood-2007-07-101691.
Texto completo da fonteGlöckner, Nina, Sven zur Oven-Krockhaus, Leander Rohr, Frank Wackenhut, Moritz Burmeister, Friederike Wanke, Eleonore Holzwart, Alfred J. Meixner, Sebastian Wolf e Klaus Harter. "Three-Fluorophore FRET Enables the Analysis of Ternary Protein Association in Living Plant Cells". Plants 11, n.º 19 (6 de outubro de 2022): 2630. http://dx.doi.org/10.3390/plants11192630.
Texto completo da fonteHe, Hai-Tao, e Didier Marguet. "Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy". Annual Review of Physical Chemistry 62, n.º 1 (5 de maio de 2011): 417–36. http://dx.doi.org/10.1146/annurev-physchem-032210-103402.
Texto completo da fonteGolfetto, Ottavia, Sunetra Biswas, Raphael Jorand, Huiying Zhang, Steven Jeffrey Tobin, Daniel Ganjali, Athanasios Sideris, Alexander R. Small, Vladana Vukojević e Tijana Jovanović-Talisman. "Opioid Receptors are Organized into Nanodomains in the Plasma Membrane". Biophysical Journal 110, n.º 3 (fevereiro de 2016): 484a. http://dx.doi.org/10.1016/j.bpj.2015.11.2587.
Texto completo da fonteKoklič, Tilen, Alenka Hrovat, Ramon Guixà-González, Ismael Rodríguez-Espigares, Damaris Navio, Robert Frangež, Matjaž Uršič et al. "Electron Paramagnetic Resonance Gives Evidence for the Presence of Type 1 Gonadotropin-Releasing Hormone Receptor (GnRH-R) in Subdomains of Lipid Rafts". Molecules 26, n.º 4 (12 de fevereiro de 2021): 973. http://dx.doi.org/10.3390/molecules26040973.
Texto completo da fonteMcKenna, J. F., D. J. Rolfe, S. E. D. Webb, A. F. Tolmie, S. W. Botchway, M. L. Martin-Fernandez, C. Hawes e J. Runions. "The cell wall regulates dynamics and size of plasma-membrane nanodomains inArabidopsis". Proceedings of the National Academy of Sciences 116, n.º 26 (10 de junho de 2019): 12857–62. http://dx.doi.org/10.1073/pnas.1819077116.
Texto completo da fonteSantos, Natalia, Luthary Segura, Amber Lewis, Thuong Pham e Kwan H. Cheng. "Multiscale Modeling of Macromolecular Interactions between Tau-Amylin Oligomers and Asymmetric Lipid Nanodomains That Link Alzheimer’s and Diabetic Diseases". Molecules 29, n.º 3 (5 de fevereiro de 2024): 740. http://dx.doi.org/10.3390/molecules29030740.
Texto completo da fonteSrinivasan, P. "Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging". Applied Physics Letters 108, n.º 3 (18 de janeiro de 2016): 033702. http://dx.doi.org/10.1063/1.4940388.
Texto completo da fonteSugiyama, Michael G., Gregory D. Fairn e Costin N. Antonescu. "EGFR signaling in breast cancer requires licensing from separate membrane nanodomains". FASEB Journal 34, S1 (abril de 2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.05687.
Texto completo da fonteLasserre, Rémi, Xiao-Jun Guo, Fabien Conchonaud, Yannick Hamon, Omar Hawchar, Anne-Marie Bernard, Saïdi M'Homa Soudja et al. "Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation". Nature Chemical Biology 4, n.º 9 (20 de julho de 2008): 538–47. http://dx.doi.org/10.1038/nchembio.103.
Texto completo da fonteMurata, Michio, Shinya Hanashima, Yo Yano, Tomokazu Yasuda, Hiroshi Tsuchikawa, Nobuaki Matsumori, Masanao Kinoshita e J. P. Slotte. "Sphingomyelin Nanodomains Mainly Constitute Liquid-Ordered Phase of Ternary Model Membrane". Biophysical Journal 118, n.º 3 (fevereiro de 2020): 78a. http://dx.doi.org/10.1016/j.bpj.2019.11.600.
Texto completo da fonteThibivilliers, Sandra, Andrew Farmer e Marc Libault. "Biological and Cellular Functions of the Microdomain-Associated FWL/CNR Protein Family in Plants". Plants 9, n.º 3 (19 de março de 2020): 377. http://dx.doi.org/10.3390/plants9030377.
Texto completo da fonteJeyifous, Okunola, Eric I. Lin, Xiaobing Chen, Sarah E. Antinone, Ryan Mastro, Renaldo Drisdel, Thomas S. Reese e William N. Green. "Palmitoylation regulates glutamate receptor distributions in postsynaptic densities through control of PSD95 conformation and orientation". Proceedings of the National Academy of Sciences 113, n.º 52 (12 de dezembro de 2016): E8482—E8491. http://dx.doi.org/10.1073/pnas.1612963113.
Texto completo da fonteOelke, Jochen, Andreea Pasc, Achim Wixforth, Oleg Konovalov e Motomu Tanaka. "Highly uniform, strongly correlated fluorinated lipid nanodomains embedded in biological membrane models". Applied Physics Letters 93, n.º 21 (24 de novembro de 2008): 213901. http://dx.doi.org/10.1063/1.3028088.
Texto completo da fonte