Literatura científica selecionada sobre o tema "Membrane filters"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Membrane filters".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Membrane filters"
Li, Xun Chao, e Cong Li. "The Development of Household Membrane Filters for Drinking Water Treatment". Applied Mechanics and Materials 535 (fevereiro de 2014): 446–50. http://dx.doi.org/10.4028/www.scientific.net/amm.535.446.
Texto completo da fonteAlayande, Abayomi Babatunde, Yesol Kang, Jaewon Jang, Hobin Jee, Yong-Gu Lee, In S. Kim e Euntae Yang. "Antiviral Nanomaterials for Designing Mixed Matrix Membranes". Membranes 11, n.º 7 (22 de junho de 2021): 458. http://dx.doi.org/10.3390/membranes11070458.
Texto completo da fonteMatlakh, Nikita, Dmytro Trushakov, Oleksandr Kozlovskyi e Marianna Fedotova. "Creation of a Multi-section Water Purification Filter With Automated Control of Membrane Pollution". National Interagency Scientific and Technical Collection of Works. Design, Production and Exploitation of Agricultural Machines, n.º 52 (2022): 166–77. http://dx.doi.org/10.32515/2414-3820.2022.52.166-177.
Texto completo da fontePapageorgiou, Georgios T., Laura Mocé-Llivina, Christina G. Christodoulou, Francisco Lucena, Dina Akkelidou, Eleni Ioannou e Juan Jofre. "A Simple Methodological Approach for Counting and Identifying Culturable Viruses Adsorbed to Cellulose Nitrate Membrane Filters". Applied and Environmental Microbiology 66, n.º 1 (1 de janeiro de 2000): 194–98. http://dx.doi.org/10.1128/aem.66.1.194-198.2000.
Texto completo da fonteShin, Woo-Jin, Hyung-Seon Shin, Ji-Hun Hwang e Kwang-Sik Lee. "Effects of Filter-Membrane Materials on Concentrations of Trace Elements in Acidic Solutions". Water 12, n.º 12 (12 de dezembro de 2020): 3497. http://dx.doi.org/10.3390/w12123497.
Texto completo da fonteZhang, Jinfeng, Guanyi Chen, Yanning Ma, Miao Xu, Songyan Qin, Xiaoliang Liu, Haijun Feng e Lian Hou. "Purification of pickling wastewater from the steel industry using membrane filters: Performance and membrane fouling". Environmental Engineering Research 27, n.º 1 (29 de dezembro de 2020): 200486–0. http://dx.doi.org/10.4491/eer.2020.486.
Texto completo da fonteAfzal, Mohammad A., Joshua Peles e Andrew L. Zydney. "Comparative Analysis of the Impact of Protein on Virus Retention for Different Virus Removal Filters". Membranes 14, n.º 7 (17 de julho de 2024): 158. http://dx.doi.org/10.3390/membranes14070158.
Texto completo da fonteWohlsen, T., J. Bates, B. Gray e M. Katouli. "Evaluation of Five Membrane Filtration Methods for Recovery of Cryptosporidium and Giardia Isolates from Water Samples". Applied and Environmental Microbiology 70, n.º 4 (abril de 2004): 2318–22. http://dx.doi.org/10.1128/aem.70.4.2318-2322.2004.
Texto completo da fonteSanaei, P., G. W. Richardson, T. Witelski e L. J. Cummings. "Flow and fouling in a pleated membrane filter". Journal of Fluid Mechanics 795 (13 de abril de 2016): 36–59. http://dx.doi.org/10.1017/jfm.2016.194.
Texto completo da fonteCanalli Bortolassi, Ana Cláudia, Vádila Giovana Guerra, Mônica Lopes Aguiar, Laurence Soussan, David Cornu, Philippe Miele e Mikhael Bechelany. "Composites Based on Nanoparticle and Pan Electrospun Nanofiber Membranes for Air Filtration and Bacterial Removal". Nanomaterials 9, n.º 12 (6 de dezembro de 2019): 1740. http://dx.doi.org/10.3390/nano9121740.
Texto completo da fonteTeses / dissertações sobre o assunto "Membrane filters"
Li, Hong-yu Graduate School of Biomedical Engineering Faculty of Engineering UNSW. "Mechanism studies for crossflow microfiltration with pulsatile flow". Awarded by:University of New South Wales. Graduate School of Biomedical Engineering, 1995. http://handle.unsw.edu.au/1959.4/17858.
Texto completo da fonteDeng, Shi. "Development of a coarse pore membrane bioreactor with in-situ membrane cleaning /". View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?EVNG%202007%20DENG.
Texto completo da fonteBorkar, Neha. "Characterization of microporous membrane filters using scattering techniques". University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1289943937.
Texto completo da fonteNel, A. M. "Removal of organic foulants from capillary ultrafiltration membranes by use of ultrasound". Thesis, Link to the online version, 2006. http://hdl.handle.net/10019/1997.
Texto completo da fonteWong, Hiu Man. "Removal of pathogens by membrane bioreactor : removal efficiency, mechanisms and influencing factors /". View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202004%20WONGH.
Texto completo da fonteIncludes bibliographical references (leaves 93-102). Also available in electronic version. Access restricted to campus users.
Parameshwaran, Kathiravelu Chemical Sciences & Engineering Faculty of Engineering UNSW. "Enhancing membrane processes for water reuse". Awarded by:University of New South Wales. Chemical Sciences & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41495.
Texto completo da fontePang, Shing Kin. "Development of a low-cost membrane with used non-woven material for wastewater treatment /". View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202006%20PANG.
Texto completo da fonteBahia, Adilson Silva [UNESP]. "Tratamento de efluente de curtume por biofiltro aerado Submerso pré-tratado com microfiltro de membrana". Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/111149.
Texto completo da fonteOs efluentes do processo de industrialização do couro em curtumes apresentam, além de elevadas concentrações de matéria orgânica em termos de Demanda Química de Oxigênio (DQO) e Demanda Bioquímica de Oxigênio (DBO), altas concentrações de sólidos totais, suspensos e sulfeto, o que torna o tratamento destes efluentes problemático. O objetivo do presente trabalho foi avaliar a biotratabilidade dos efluentes de curtumes por meio do tratamento por Biofiltro Aaerado Submerso (BF) após pré-tratamento por membrana de microfiltração. Os resultados mostraram que pode haver a viabilidade técnica no uso de BF para remoção de matéria orgânica e sulfeto de águas residuárias industriais de curtume, pois atingiram, respectivamente, a remoção 84% e 98 %
The effluents from leather tanning process have in addition to high concentrations of organic matter in terms of Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD), high concentrations of total solids, total suspended solids and sulfide, which makes problematic the treatment of these effluents. The objective of this study was to evaluate the biotreatability of tannery effluent by submerged aerated biofilter after microfiltration membrane pretreatment. The results showed that can be used in the technical feasibility of BF removal of organic sulphide and industrial raw tannery wastewater as it amounted, respectively, removal to 84% and 98%
Bahia, Adilson Silva. "Tratamento de efluente de curtume por biofiltro aerado Submerso pré-tratado com microfiltro de membrana /". Ilha Solteira, 2014. http://hdl.handle.net/11449/111149.
Texto completo da fonteBanca: Liliane Lazzari Albertin
Banca: Luis Fernando Rossi Léo
Resumo: Os efluentes do processo de industrialização do couro em curtumes apresentam, além de elevadas concentrações de matéria orgânica em termos de Demanda Química de Oxigênio (DQO) e Demanda Bioquímica de Oxigênio (DBO), altas concentrações de sólidos totais, suspensos e sulfeto, o que torna o tratamento destes efluentes problemático. O objetivo do presente trabalho foi avaliar a biotratabilidade dos efluentes de curtumes por meio do tratamento por Biofiltro Aaerado Submerso (BF) após pré-tratamento por membrana de microfiltração. Os resultados mostraram que pode haver a viabilidade técnica no uso de BF para remoção de matéria orgânica e sulfeto de águas residuárias industriais de curtume, pois atingiram, respectivamente, a remoção 84% e 98 %
Abstract: The effluents from leather tanning process have in addition to high concentrations of organic matter in terms of Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD), high concentrations of total solids, total suspended solids and sulfide, which makes problematic the treatment of these effluents. The objective of this study was to evaluate the biotreatability of tannery effluent by submerged aerated biofilter after microfiltration membrane pretreatment. The results showed that can be used in the technical feasibility of BF removal of organic sulphide and industrial raw tannery wastewater as it amounted, respectively, removal to 84% and 98%
Mestre
Li, Jianxin. "Real-time investigation of fouling phenomena in membrane filtrations by a non-invasive ultrasonic technique". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/53027.
Texto completo da fonteSome digitised pages may appear illegible due to the condition of the original hard copy.
ENGLISH ABSTRACT: Membrane fouling is universally accepted as one of the most critical problems limiting the wider application of membranes in liquid separations. The development and utilization of a suitable non-invasive technique for the on-line monitoring of fouling in industrial and laboratory applications may enable the effectiveness of fouling remediation and cleaning strategies to be quantified. The overall objective of this research is to develop ultrasonic time-domain reflectometry (UTDR) and its use as an analytical tool for the real-time study of inorganic-, organic- and protein- fouling of various types of membranes including nylon, polysulfone (PSU) and polyethersulfone (PESU) and modules, including flatsheet and tubular types. Different separation systems including microfiltration (MF) and ultrafiltration (UF), flat-sheet and tubular modules, and suitable ultrasonic probes were used in this study. Results of this study show a good correlation between the UTDR signal response and the development of a fouling layer on a membrane surface. UTDR effectively detected the appearance, growth and movement of a fouling layer echo as fouling proceeded. Cake (fouling)-layer compressibility was observed by UTDR. The structure and compaction of an asymmetric PSU membrane could be detected by UTDR. UTDR was also successfully used for monitoring membrane cleaning and evaluating the cleaning effectiveness o f various cleaning methods. UTDR results corroborated the flux measurements and SEM analyses. The ultrasonic unit is a programmed microprocessor, and can be used to compare reference and test signals to produce a differential signal (a fouling layer echo). A differential signal indicates the state and progress o f a fouling layer on the membrane surface in actual operations. Both amplitude and arrival time of differential signals as a function of operation time provide useful quantitative information, i.e. changes in thickness and density of a fouling layer, on the fouling processes. A predictive modelling program, ultrasonic reflection modelling (URM), was developed to describe the processes of ultrasonic testing related to the deposition of fouling layers on membrane surfaces. The mathematical model could substantiate changes in the densities of the fouling layer as well as the thickness. This is important as deposit resistance to flow is related to both thickness and density (compressibility). The predicted results of cake layer deposition are in good agreement with the actual UTDR measurements obtained in MF and UF. Furthermore, protein fouling was successfully detected in tubular UF by UTDR. Ultrasonic frequency spectra could be used as an additional tool for fouling detection.
AFRIKAANSE OPSOMMING: Membraan-aanvuiling of -verstopping is die grootste struikelblok wat die meer algemene aanwending van membrane vir verskillende watersuiweringsprosesse beinvloed. Die ontwikkeling en gebruik van ‘n geskikte nie-inmengende tegniek vir die in-lyn meting van aanvuiling van membrane in laboratorium-en nywerheidstoepassings mag ‘n geleentheid bied vir die kwantifisering van die verwydering van aanvuiling en skoonmaakstrategiee. Die hoofdoel van hierdie studie was die ontwikkeling van ultrasoniese tydgebiedsweerkaatsing (Eng: ultrasonic time-domain reflectometry, UTDR) en die gebruik daarvan as ‘n analitiese metode vir die studie van anorganiese-, organiese- en bio-besoedeling op verskeie tips membrane, insluitend nylon, polisufoon (PSU) en polietersulfoon (PESU), in beide platvel- en buismodules. Verskeie skeidingsisteme, insluitend mikrofiltrasie (MF) en ultrafiltrasie (UF) is ontwerp en gebruik in hierdie studie. Eksperimentele resultate het goeie ooreenstemming tussen die UTDR seinrespons en die ontwikkeling van ‘n aanvuilingslaag op die membraanoppervlakte bewys. Die ultrasoniese tegniek kon die vorming, groei en beweging van ‘n bevuilingslaagterugkaartsing waarneem namate bevuiling vorder. Aanvuilingslaagsamepersing is deur UTDR waargeneem. Die struktuur en samepersing van ‘n asimmetriese PSU membraan is ook deur UTDR gesien. UTDR is verder suksesvol gebruik om die skoonmaak van membrane te monitor en om die skoonmaakgeskiktheid (cleaning effectiveness) van verskeie skoonmaakmetodes te bepaal. UTDR resultate het permeaatvloeimetings en SEM analyses bevestig. Die ultrasoniese eenheid is ‘n geprogrameerde mikroverwerker, en kan gebruik word om verwysings- en toetsseine te vergelyk, en dan ‘n differensiaalsein te gee (‘n aanvuilingslaagweerklank). ‘n Differensiaalsein dui die toestand en vordering van ‘n aanvuilingslaag op die membraanoppervlakte gedurende gebruik aan. Beide amplitude asook aankomstyd van differensiaalseine as funksies van gebruikstyd verskaf bruikbare kwantatiewe inligting, dws. Veranderings in die dikte en digtheid van ‘n aanvuilingslaag, op die aanvuilingsproses. ‘n Voorspellingsmodelleringprogram - ultrasonieseweerkaatsingsmodellering (Eng: ultrasonic reflection modeling, URM) is ontwikkel om die proses van ultrasoniese toetsing by die deponering van aanvuilingslae op membraanoppervlaktes beter te beskryf. Veranderings in die digtheid en dikte van die aanvuilingslaag teenvloei is verwant aan dikte en digtheid (saampersbaarheid). Die voorspelde resultate van aanvuilingslaagdeponering stem goed ooreen met die werklike UTDR-metings wat in MF en UF gemaak is. Bio-aanvuiling is suksesvol waargeneem deur UTDR in buisvormige UF membrane. Ultrasoniese frekwensiespektra kan dus as ‘n bykomende metode gebruik word vir die waarneming van aanvuiling op skeidingsmembrane.
Livros sobre o assunto "Membrane filters"
Basile, Angelo, e Catherine Charcosset. Integrated membrane systems and processes. Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc., 2016.
Encontre o texto completo da fonte1959-, Lindsey Karen, Crull Anna W e Business Communications Co, eds. Membrane microfiltration: Materials, markets & opportunities. Norwalk, Conn., U.S.A: Business Communications Co., 1988.
Encontre o texto completo da fonteTomaszewska, Maria. Destylacja membranowa. Szczecin: Wydawn. Uczelniane Politechniki Szczecińskiej, 1996.
Encontre o texto completo da fonteBodzek, Michał. Studia nad otrzymywaniem, strukturą, własnościami transportowymi i zastosowaniem membran do ultrafiltracji. Gliwice: Dział Wydawnictw Politechniki Śląskiej, 1985.
Encontre o texto completo da fonteSharpe, Anthony N. Membrane filter food microbiology. Letchworth: Research Studies, 1987.
Encontre o texto completo da fonteEhsani, Neda. A study on fractionation and ultrafiltration of proteins with characterized modified and unmodified membranes. Lappeenranta: Lappeenranta University of Technology, 1996.
Encontre o texto completo da fonteHanft, Susan. Membrane technology: A new era. Norwalk, CT: Business Communications Co., 2001.
Encontre o texto completo da fontePark, Geriann P. Membrane technology: A new era. Norwalk, CT: Business Communications Co., 1996.
Encontre o texto completo da fonteWier, Patrick. Reverse osmosis modules and equipment. Norwalk, CT: Business Communications Co., 1998.
Encontre o texto completo da fonteGutman, R. G. Membrane filtration: The technology of pressure-driven crossflow processes. Bristol, England: A. Hilger, 1987.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Membrane filters"
Srivastava, Anchal, Saurabh Srivastava e Kaushik Kalaga. "Carbon Nanotube Membrane Filters". In Springer Handbook of Nanomaterials, 1099–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20595-8_31.
Texto completo da fonteJornitz, Maik W. "Protein Adsorption on Membrane Filters". In Filtration and Purification in the Biopharmaceutical Industry, 191–220. Third edition. | Boca Raton, Florida : CRC Press, 2019. | Series: Drugs and the pharmaceutical sciences: CRC Press, 2019. http://dx.doi.org/10.1201/9781315164953-9.
Texto completo da fonteBakshi, Abhaya K., Rajendra Ghimire, Eric Sheridan e Melanie Kuhn. "Treatment of Produced Water using Silicon Carbide Membrane Filters". In Advances in Bioceramics and Porous Ceramics VIII, 89–106. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119211624.ch9.
Texto completo da fonteHavránek, V., V. Hnatowicz, J. Kvítek e I. Obrusník. "Analysis of Membrane Filters and Thick Fly Ash Samples by PIXE". In Nuclear Analytical Methods in the Life Sciences 1994, 185–93. Totowa, NJ: Humana Press, 1994. http://dx.doi.org/10.1007/978-1-4757-6025-5_22.
Texto completo da fonteTatpate, Pallavi Mahajan, Supriya Dhume, Yogesh Chendake e Sachin Chavan. "Application of Nanomaterial-Modified Membrane Filters for Separation of Heavy Metal Pollutants". In Advances in Green and Sustainable Nanomaterials, 119–36. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003328322-5.
Texto completo da fonteSomasegaran, Padma, e Heinz J. Hoben. "Counting Serologically Specific Rhizobia in Soil and Peat Inoculants Using Membrane Filters and Immunofluorescence". In Handbook for Rhizobia, 65–74. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-8375-8_7.
Texto completo da fonteNakano, H., S. Manabe, S. Uematsu, T. Sato, N. Osawa, T. Hirasaki, T. Yamashiki, S. Sekiguchi e N. Yamamoto. "Novel Validation Method of Virus-Removability for Biological Cell Culture Products Using Polymeric Membrane Filters". In Animal Cell Technology: Basic & Applied Aspects, 87–102. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2844-5_13.
Texto completo da fonteTong, Flora, e Chikezie Nwaoha. "Filters and Membranes". In Process Plant Equipment, 81–105. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118162569.ch6.
Texto completo da fonteVedavyasan, C. V. "Sand Filter". In Encyclopedia of Membranes, 1743–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_525.
Texto completo da fonteVedavyasan, C. V. "Sand Filter". In Encyclopedia of Membranes, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-40872-4_525-2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Membrane filters"
Mao, Ning, Jingxian Liu, Deqiang Chang e Xi Sun. "Comparison of filtration performances between membrane and non-membrane filters". In 2015 International Symposium on Computers and Informatics. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/isci-15.2015.296.
Texto completo da fonteWang, Yi, Martin J. Prest e Michael J. Lancaster. "Membrane Supported Transmission Lines and Filters". In 2008 38th European Microwave Conference (EuMC). IEEE, 2008. http://dx.doi.org/10.1109/eumc.2008.4751658.
Texto completo da fonteKonstantinidis, George, Alexandru Mueller, George Deligiorgis, Ioana Petrini, Dan Vasilache, Dan Neculoiu, Michalis Lagadas et al. "GaAs-membrane-supported millimeter-wave filters". In Micromachining and Microfabrication, editado por Henry Helvajian, Siegfried W. Janson e Franz Laermer. SPIE, 2001. http://dx.doi.org/10.1117/12.443031.
Texto completo da fonteKaufmann, P., A. S. Kudaka, M. M. Cassiano, A. M. Melo, R. Marcon, A. Marun, P. Pereyra et al. "Continuum terahertz radiation detection using membrane filters". In 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC). IEEE, 2009. http://dx.doi.org/10.1109/imoc.2009.5427586.
Texto completo da fonteG. Giorges, Aklilu T., e John A. Pierson. "The Comparison of Membrane Blocking Process and Yeast Membrane Filtration Data". In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66944.
Texto completo da fonteSharma, B., e C. T. Sun. "Design of Acoustic Filters Using Acoustic and Elastic Resonators". In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65499.
Texto completo da fonteThomas, Alison M., Chrysa M. Theodore e Patrick J. Hood. "Polymer liquid crystal membrane filters in space applications". In International Symposium on Optical Science and Technology, editado por Edward W. Taylor. SPIE, 2000. http://dx.doi.org/10.1117/12.405366.
Texto completo da fonteNakamura, Keisuke, Hiroshi Oki, Ryoko Sanui, Katsunori Hanamura, Masamichi Tanaka, Nobuhiro Hidaka e Hiroaki Matsumoto. "Soot Oxidation Characteristics of SiC Nanoparticle Membrane Filters". In SAE 2012 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2012. http://dx.doi.org/10.4271/2012-01-0848.
Texto completo da fonteWhite, Lloyd R. "Ceramic Filters for Use at High Temperature". In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-188.
Texto completo da fonteAlonso-Ramos, Carlos A., Xavier Le Roux, Daniel Benedikovic, Vladyslav Vakarin, Elena Durán-Valdeiglesias, Dorian Oser, Diego Pérez-Galacho et al. "High rejection ratio silicon membrane Bragg filters (Conference Presentation)". In Metamaterials, editado por Allan D. Boardman, Kevin F. MacDonald e Anatoly V. Zayats. SPIE, 2018. http://dx.doi.org/10.1117/12.2307362.
Texto completo da fonteRelatórios de organizações sobre o assunto "Membrane filters"
Kesavanathan, Jana, e Robert W. Doherty. Test Procedure for Removing Polystyrene Latex Microspheres from Membrane Filters. Fort Belvoir, VA: Defense Technical Information Center, julho de 1999. http://dx.doi.org/10.21236/ada367979.
Texto completo da fontePhelps, John M. Handbook for evaluation of TEM sample preparation of particles on membrane filters:. Gaithersburg, MD: National Institute of Standards and Technology, 1993. http://dx.doi.org/10.6028/nist.ir.5134.
Texto completo da fonteHess, M., e C. A. W. Di Bella. Gasification of char in a membrane filter: Final report. Office of Scientific and Technical Information (OSTI), agosto de 1987. http://dx.doi.org/10.2172/5541498.
Texto completo da fonteOji, L. N., M. C. Thompson, K. Peterson, C. May e T. M. Kafka. Cesium Removal from R-Reactor Building Disassembly Basin Using 3MEmpore Web-Membrane Filter Technology. Office of Scientific and Technical Information (OSTI), junho de 1998. http://dx.doi.org/10.2172/303905.
Texto completo da fonteBarajas e George. PR-015-05600-R01 Assessment of Sampling Systems for Monitoring Water Vapor in Natural Gas Streams. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), janeiro de 2008. http://dx.doi.org/10.55274/r0011197.
Texto completo da fonteGuilio A. Rossi, Kenneth R. Butcher e Stacia M. Wagner. DEVELOPMENT AND TESTING OF A CERIA-ZIRCONIA TOUGHENED ALUMINA PROTOTYPE FILTER ELEMENT MADE OF RETICULATED CERAMIC FOAM COATED WITH A CERAMIC MEMBRANE ACTING AS BARRIER FILTER FOR FLY ASH. Office of Scientific and Technical Information (OSTI), fevereiro de 1999. http://dx.doi.org/10.2172/9039.
Texto completo da fonteKalman, Joseph, e Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, julho de 2022. http://dx.doi.org/10.31979/mti.2021.2041.
Texto completo da fonteKalman, Joseph, e Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, julho de 2022. http://dx.doi.org/10.31979/mti.2022.2041.
Texto completo da fonte