Artigos de revistas sobre o tema "Membrane d’échangeuse de protons"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Membrane d’échangeuse de protons".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sokolov, Valerij S., Vsevolod Yu Tashkin, Darya D. Zykova, Yulia V. Kharitonova, Timur R. Galimzyanov e Oleg V. Batishchev. "Electrostatic Potentials Caused by the Release of Protons from Photoactivated Compound Sodium 2-Methoxy-5-nitrophenyl Sulfate at the Surface of Bilayer Lipid Membrane". Membranes 13, n.º 8 (8 de agosto de 2023): 722. http://dx.doi.org/10.3390/membranes13080722.
Texto completo da fonteAbabneh, Omar, Abdallah Barjas Qaswal, Ahmad Alelaumi, Lubna Khreesha, Mujahed Almomani, Majdi Khrais, Oweiss Khrais et al. "Proton Quantum Tunneling: Influence and Relevance to Acidosis-Induced Cardiac Arrhythmias/Cardiac Arrest". Pathophysiology 28, n.º 3 (3 de setembro de 2021): 400–436. http://dx.doi.org/10.3390/pathophysiology28030027.
Texto completo da fonteWeichselbaum, Ewald, e Peter Pohl. "Protons at the membrane water interface". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1859 (setembro de 2018): e117. http://dx.doi.org/10.1016/j.bbabio.2018.09.346.
Texto completo da fonteRayabharam, Archith, e N. R. Aluru. "Quantum water desalination: Water generation through separate pathways for protons and hydroxide ions in membranes". Journal of Applied Physics 132, n.º 19 (21 de novembro de 2022): 194302. http://dx.doi.org/10.1063/5.0122324.
Texto completo da fonteBramhall, John. "Conductance routes for protons across membrane barriers". Biochemistry 26, n.º 10 (maio de 1987): 2848–55. http://dx.doi.org/10.1021/bi00384a028.
Texto completo da fonteAbdallat, Mahmoud, Abdallah Barjas Qaswal, Majed Eftaiha, Abdel Rahman Qamar, Qusai Alnajjar, Rawand Sallam, Lara Kollab et al. "A mathematical modeling of the mitochondrial proton leak via quantum tunneling". AIMS Biophysics 11, n.º 2 (2024): 189–233. http://dx.doi.org/10.3934/biophy.2024012.
Texto completo da fonteKeller, David, Seema Singh, Paola Turina, Roderick Capaldi e Carlos Bustamante. "Structure of ATP synthase by SFM and single-particle image analysis". Proceedings, annual meeting, Electron Microscopy Society of America 53 (13 de agosto de 1995): 722–23. http://dx.doi.org/10.1017/s0424820100139986.
Texto completo da fonteM., Ambaga, Tumen-Ulzii A. e Buyantushig T. "THE BUFFERING CAPACITY OF ERYTHROCYTE MEMBRANE SURROUNDINGS IN RELATION TO FREE PROTONS INSIGHTOF NEW ELUCIDATION OF EIGTH AND NINTH STAGES OF THE MEMBRANE REDOXY POTENTIAL THREE STATE DEPENDENT 9 STEPPED FULL CYCLE OF PROTON CONDUCTANCE IN THE HUMAN BODY". International Journal of Advanced Research 10, n.º 11 (30 de novembro de 2022): 29–33. http://dx.doi.org/10.21474/ijar01/15638.
Texto completo da fonteKluka, Ľubomír, Ernest Šturdík, Štefan Baláž, Dušan Kordík, Michal Rosenberg, Marián Antalík e Jozef Augustín. "Membrane proton transport mediated by phenylhydrazonopropanedinitriles". Collection of Czechoslovak Chemical Communications 53, n.º 1 (1988): 186–97. http://dx.doi.org/10.1135/cccc19880186.
Texto completo da fonteVidilaseris, Keni, Juho Kellosalo e Adrian Goldman. "A high-throughput method for orthophosphate determination of thermostable membrane-bound pyrophosphatase activity". Analytical Methods 10, n.º 6 (2018): 646–51. http://dx.doi.org/10.1039/c7ay02558k.
Texto completo da fonteArdalan, Afshan, Matthew D. Smith e Masoud Jelokhani-Niaraki. "Uncoupling Proteins and Regulated Proton Leak in Mitochondria". International Journal of Molecular Sciences 23, n.º 3 (28 de janeiro de 2022): 1528. http://dx.doi.org/10.3390/ijms23031528.
Texto completo da fonteFrank, Pinar, Bernhard Siebenhofer, Theresa Hanzer, Andreas F. Geiss, Florian Schadauer, Ciril Reiner-Rozman, Bill Durham et al. "Proteo-lipobeads for the oriented encapsulation of membrane proteins". Soft Matter 11, n.º 15 (2015): 2906–8. http://dx.doi.org/10.1039/c4sm02646b.
Texto completo da fonteChistyakov, V. A., Yu O. Smirnova e I. Alperovich. "Feasibility of the C60 Fullerene Antioxidant Properties: Study with Density Functional Theory Computer Modeling". International Journal of Mathematics and Computers in Simulation 15 (27 de novembro de 2021): 107–9. http://dx.doi.org/10.46300/9102.2021.15.20.
Texto completo da fonteJUNGE, WOLFGANG. "Protons, the Thylakoid Membrane, and the Chloroplast ATP Synthase". Annals of the New York Academy of Sciences 574, n.º 1 Bicarbonate, (dezembro de 1989): 268–86. http://dx.doi.org/10.1111/j.1749-6632.1989.tb25164.x.
Texto completo da fonteBrzezinski, Peter, Joachim Reimann e Pia Ädelroth. "Molecular architecture of the proton diode of cytochrome c oxidase". Biochemical Society Transactions 36, n.º 6 (19 de novembro de 2008): 1169–74. http://dx.doi.org/10.1042/bst0361169.
Texto completo da fonteDeCoursey, Thomas E. "Voltage and pH sensing by the voltage-gated proton channel, H V 1". Journal of The Royal Society Interface 15, n.º 141 (abril de 2018): 20180108. http://dx.doi.org/10.1098/rsif.2018.0108.
Texto completo da fontePorter, R. K., e M. D. Brand. "Mitochondrial proton conductance and H+/0 ratio are independent of electron transport rate in isolated hepatocytes". Biochemical Journal 310, n.º 2 (1 de setembro de 1995): 379–82. http://dx.doi.org/10.1042/bj3100379.
Texto completo da fonteRayabharam, Archith, e N. R. Aluru. "Interstitial proton transport through defective MXenes". Applied Physics Letters 120, n.º 21 (23 de maio de 2022): 211601. http://dx.doi.org/10.1063/5.0098709.
Texto completo da fonteLande, M. B., N. A. Priver e M. L. Zeidel. "Determinants of apical membrane permeabilities of barrier epithelia". American Journal of Physiology-Cell Physiology 267, n.º 2 (1 de agosto de 1994): C367—C374. http://dx.doi.org/10.1152/ajpcell.1994.267.2.c367.
Texto completo da fontePasternak, C. A., C. L. Bashford e G. Menestrina. "Mechanisms of attack and defence at the cell surface: The use of phospholipid bilayers as models for cell membrane". Bioscience Reports 9, n.º 4 (1 de agosto de 1989): 503–7. http://dx.doi.org/10.1007/bf01117054.
Texto completo da fonteRahmawati, Sitti, Cynthia Linaya Radiman e Muhamad Abdulkadir Martoprawiro. "Ab Initio Study of Proton Transfer and Hydration in Phosphorylated Nata de Coco". Indonesian Journal of Chemistry 17, n.º 3 (30 de novembro de 2017): 523. http://dx.doi.org/10.22146/ijc.24895.
Texto completo da fonteShi, Le, Ruggero Rossi, Moon Son, Derek M. Hall, Michael A. Hickner, Christopher A. Gorski e Bruce E. Logan. "Using reverse osmosis membranes to control ion transport during water electrolysis". Energy & Environmental Science 13, n.º 9 (2020): 3138–48. http://dx.doi.org/10.1039/d0ee02173c.
Texto completo da fonteQi, Han, Zhongwu Li, Yi Tao, Weiwei Zhao, Kabin Lin, Zhenhua Ni, Chuanhong Jin, Yan Zhang, Kedong Bi e Yunfei Chen. "Fabrication of sub-nanometer pores on graphene membrane for ion selective transport". Nanoscale 10, n.º 11 (2018): 5350–57. http://dx.doi.org/10.1039/c8nr00050f.
Texto completo da fonteJunoh, Hazlina, Juhana Jaafar, Nik Abdul Hadi Md Nordin, Ahmad Fauzi Ismail, Mohd Hafiz Dzarfan Othman, Mukhlis A. Rahman, Farhana Aziz e Norhaniza Yusof. "Performance of Polymer Electrolyte Membrane for Direct Methanol Fuel Cell Application: Perspective on Morphological Structure". Membranes 10, n.º 3 (25 de fevereiro de 2020): 34. http://dx.doi.org/10.3390/membranes10030034.
Texto completo da fonteHill, Warren G., Eyad Almasri, W. Giovanni Ruiz, Gerard Apodaca e Mark L. Zeidel. "Water and solute permeability of rat lung caveolae: high permeabilities explained by acyl chain unsaturation". American Journal of Physiology-Cell Physiology 289, n.º 1 (julho de 2005): C33—C41. http://dx.doi.org/10.1152/ajpcell.00046.2005.
Texto completo da fonteKhorana, H. G. "Bacteriorhodopsin, a membrane protein that uses light to translocate protons." Journal of Biological Chemistry 263, n.º 16 (junho de 1988): 7439–42. http://dx.doi.org/10.1016/s0021-9258(18)68514-x.
Texto completo da fonteBRISKIN, DONALD P., e JOHN B. HANSON. "How Does the Plant Plasma Membrane H+-ATPase Pump Protons?" Journal of Experimental Botany 43, n.º 3 (1992): 269–89. http://dx.doi.org/10.1093/jxb/43.3.269.
Texto completo da fonteLuoto, Heidi H., Erika Nordbo, Alexander A. Baykov, Reijo Lahti e Anssi M. Malinen. "Membrane Na+-pyrophosphatases Can Transport Protons at Low Sodium Concentrations". Journal of Biological Chemistry 288, n.º 49 (24 de outubro de 2013): 35489–99. http://dx.doi.org/10.1074/jbc.m113.510909.
Texto completo da fonteNegrete, H. O., J. P. Lavelle, J. Berg, S. A. Lewis e M. L. Zeidel. "Permeability properties of the intact mammalian bladder epithelium". American Journal of Physiology-Renal Physiology 271, n.º 4 (1 de outubro de 1996): F886—F894. http://dx.doi.org/10.1152/ajprenal.1996.271.4.f886.
Texto completo da fonteLanzrein, Markus, Nicole Käsermann e Christoph Kempf. "Changes in membrane permeability during semliki forest virus induced cell fusion". Bioscience Reports 12, n.º 3 (1 de junho de 1992): 221–36. http://dx.doi.org/10.1007/bf01121792.
Texto completo da fonteKaur, Divya, Xiuhong Cai, Umesh Khaniya, Yingying Zhang, Junjun Mao, Manoj Mandal e Marilyn Gunner. "Tracing the Pathways of Waters and Protons in Photosystem II and Cytochrome c Oxidase". Inorganics 7, n.º 2 (31 de janeiro de 2019): 14. http://dx.doi.org/10.3390/inorganics7020014.
Texto completo da fonteMovellan, Kumar Tekwani, Eszter E. Najbauer, Supriya Pratihar, Michele Salvi, Karin Giller, Stefan Becker e Loren B. Andreas. "Alpha protons as NMR probes in deuterated proteins". Journal of Biomolecular NMR 73, n.º 1-2 (14 de fevereiro de 2019): 81–91. http://dx.doi.org/10.1007/s10858-019-00230-y.
Texto completo da fonteRasi-Caldogno, Franca, Maria Chiara Pugliarello e Maria Ida De Michelis. "Electrogenic Transport of Protons Driven by the Plasma Membrane ATPase in Membrane Vesicles from Radish". Plant Physiology 77, n.º 1 (1 de janeiro de 1985): 200–205. http://dx.doi.org/10.1104/pp.77.1.200.
Texto completo da fonteMuljani, S., e A. Wulanawati. "Microbial Fuel Cell Based Polystyrene Sulfonated Membrane as Proton Exchange Membrane". ALCHEMY Jurnal Penelitian Kimia 12, n.º 2 (2 de novembro de 2016): 155. http://dx.doi.org/10.20961/alchemy.12.2.1818.155-166.
Texto completo da fonteMuljani, S., e A. Wulanawati. "Microbial Fuel Cell Based Polystyrene Sulfonated Membrane as Proton Exchange Membrane". ALCHEMY Jurnal Penelitian Kimia 12, n.º 2 (2 de novembro de 2016): 155. http://dx.doi.org/10.20961/alchemy.v12i2.1818.
Texto completo da fonteKageyama, Miho, Beste Balci, Shotaro Danjo, Kimiyo Nakamichi e Motoaki Kawase. "Hydrogen and Oxygen Permeability through PEFC Membrane and Membrane Electrode Assembly". ECS Transactions 112, n.º 4 (29 de setembro de 2023): 291–303. http://dx.doi.org/10.1149/11204.0291ecst.
Texto completo da fonteNesterov, Semen V., Lev S. Yaguzhinsky, Raif G. Vasilov, Vasiliy N. Kadantsev e Alexey N. Goltsov. "Contribution of the Collective Excitations to the Coupled Proton and Energy Transport along Mitochondrial Cristae Membrane in Oxidative Phosphorylation System". Entropy 24, n.º 12 (13 de dezembro de 2022): 1813. http://dx.doi.org/10.3390/e24121813.
Texto completo da fonteVergara, Eva, Gonzalo Neira, Carolina González, Diego Cortez, Mark Dopson e David S. Holmes. "Evolution of Predicted Acid Resistance Mechanisms in the Extremely Acidophilic Leptospirillum Genus". Genes 11, n.º 4 (3 de abril de 2020): 389. http://dx.doi.org/10.3390/genes11040389.
Texto completo da fonteStainbrook, Sarah C., e Joseph M. Jez. "Protecting P-type plasma membrane H+-ATPases from ROS". Biochemical Journal 478, n.º 8 (21 de abril de 2021): 1511–13. http://dx.doi.org/10.1042/bcj20210109.
Texto completo da fonteFliegel, Larry. "Structural and Functional Changes in the Na+/H+ Exchanger Isoform 1, Induced by Erk1/2 Phosphorylation". International Journal of Molecular Sciences 20, n.º 10 (14 de maio de 2019): 2378. http://dx.doi.org/10.3390/ijms20102378.
Texto completo da fonteWeichselbaum, Ewald, Timur Galimzyanov, Oleg V. Batishchev, Sergey A. Akimov e Peter Pohl. "Proton Migration on Top of Charged Membranes". Biomolecules 13, n.º 2 (11 de fevereiro de 2023): 352. http://dx.doi.org/10.3390/biom13020352.
Texto completo da fonteHildebrandt, V., K. Fendler, J. Heberle, A. Hoffmann, E. Bamberg e G. Buldt. "Bacteriorhodopsin expressed in Schizosaccharomyces pombe pumps protons through the plasma membrane." Proceedings of the National Academy of Sciences 90, n.º 8 (15 de abril de 1993): 3578–82. http://dx.doi.org/10.1073/pnas.90.8.3578.
Texto completo da fonteEdman, K., P. Nollert, A. Royant, H. Belrhali, E. Pebay-Peyroula, T. Ursby, J. Hajdu, R. Neutze e E. M. Landau. "Portrait of a membrane protein in action: bacterio-rhodopsin pumping protons". Acta Crystallographica Section A Foundations of Crystallography 56, s1 (25 de agosto de 2000): s265. http://dx.doi.org/10.1107/s0108767300025666.
Texto completo da fonteSladkov, K. D., e S. S. Kolesnikov. "Model of a Molecular Proton Sensor in Taste Cells". Биологические мембраны Журнал мембранной и клеточной биологии 40, n.º 3 (1 de maio de 2023): 188–93. http://dx.doi.org/10.31857/s023347552303009x.
Texto completo da fonteBerg, Jamie R., Christian M. Spilker e Simon A. Lewis. "Modulation of polymyxin B effects on mammalian urinary bladder". American Journal of Physiology-Renal Physiology 275, n.º 2 (1 de agosto de 1998): F204—F215. http://dx.doi.org/10.1152/ajprenal.1998.275.2.f204.
Texto completo da fonteMoreno Ostertag, Laila, Xiao Ling, Katrin F. Domke, Sapun H. Parekh e Markus Valtiner. "Characterizing the hydrophobic-to-hydrophilic transition of electrolyte structuring in proton exchange membrane mimicking surfaces". Physical Chemistry Chemical Physics 20, n.º 17 (2018): 11722–29. http://dx.doi.org/10.1039/c8cp01625a.
Texto completo da fonteBashford, C. Lindsay. "Membrane pores—From biology to track-etched membranes". Bioscience Reports 15, n.º 6 (1 de dezembro de 1995): 553–65. http://dx.doi.org/10.1007/bf01204357.
Texto completo da fonteYang, Shuai-Liang, Yue-Ying Yuan, Fei Ren, Chen-Xi Zhang e Qing-Lun Wang. "High proton conductivity in a nickel(ii) complex and its hybrid membrane". Dalton Transactions 48, n.º 6 (2019): 2190–96. http://dx.doi.org/10.1039/c8dt04171g.
Texto completo da fonteSTUCHEBRUKHOV, ALEXEI A. "ELECTRON TRANSFER REACTIONS COUPLED TO PROTON TRANSLOCATION: CYTOCHROME OXIDASE, PROTON PUMPS, AND BIOLOGICAL ENERGY TRANSDUCTION". Journal of Theoretical and Computational Chemistry 02, n.º 01 (março de 2003): 91–118. http://dx.doi.org/10.1142/s0219633603000318.
Texto completo da fonteEpalle, Nathan Hugo, e Eric Beitz. "Local Attraction of Substrates and Co-Substrates Enhances Weak Acid and Base Transmembrane Transport". Biomolecules 12, n.º 12 (30 de novembro de 2022): 1794. http://dx.doi.org/10.3390/biom12121794.
Texto completo da fonte