Literatura científica selecionada sobre o tema "Medium Voltage DC"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Medium Voltage DC".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Medium Voltage DC"
Vaishnavi, Gatla, C. Venkatesh, Madikonda Rumitha e Abhishek Shanmukhan. "Single-Input Dual-Output Three-Level DC–DC Converter for EV". International Journal of Advance Research and Innovation 10, n.º 1 (2022): 48–53. http://dx.doi.org/10.51976/ijari.1012208.
Texto completo da fonteKim, Minseung, Donghee Choi e Soo Hyoung Lee. "A DCM-Based Non-Isolated Step-Down DC Transformer". Energies 17, n.º 4 (17 de fevereiro de 2024): 940. http://dx.doi.org/10.3390/en17040940.
Texto completo da fonteDu, Sixing, Bin Wu, Kai Tian, David Xu e Navid R. Zargari. "A Novel Medium-Voltage Modular Multilevel DC–DC Converter". IEEE Transactions on Industrial Electronics 63, n.º 12 (dezembro de 2016): 7939–49. http://dx.doi.org/10.1109/tie.2016.2542130.
Texto completo da fonteAfridi, Muhammad Danial. "Isolated Cascaded DAB DC-DC Converter to Boost Medium DC Voltage to HVDC". Volume 21, Issue 1 21, n.º 1 (30 de junho de 2023): 1–6. http://dx.doi.org/10.52584/qrj.2101.01.
Texto completo da fonteLin, Bor-Ren. "Soft Switching DC Converter for Medium Voltage Applications". Electronics 7, n.º 12 (18 de dezembro de 2018): 449. http://dx.doi.org/10.3390/electronics7120449.
Texto completo da fonteLi, Zhenqiang, Huiwen He, Lei Wang, Le Gao, Min Zhang e Rui Fan. "A comprehensive evaluation method of DC voltage sag in medium-low medium–low voltage DC distribution system". Energy Reports 8 (novembro de 2022): 345–56. http://dx.doi.org/10.1016/j.egyr.2022.10.140.
Texto completo da fonteZheng, Shaoduo, e Feng Lyu. "Compact Medium Voltage DC/DC Converter Using Series-Connected Power Devices". Electronics 9, n.º 6 (21 de junho de 2020): 1024. http://dx.doi.org/10.3390/electronics9061024.
Texto completo da fonteHuang, Ming. "A Non-Isolated DC-DC Modular Multilevel Converter with Proposed Middle Cells". Electronics 11, n.º 7 (2 de abril de 2022): 1135. http://dx.doi.org/10.3390/electronics11071135.
Texto completo da fonteAlsokhiry, Fahad, e Grain Philip Adam. "Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation". Sustainability 12, n.º 20 (13 de outubro de 2020): 8440. http://dx.doi.org/10.3390/su12208440.
Texto completo da fonteSimiyu, Patrobers, Ai Xin, Kunyu Wang, George Adwek e Salman Salman. "Multiterminal Medium Voltage DC Distribution Network Hierarchical Control". Electronics 9, n.º 3 (19 de março de 2020): 506. http://dx.doi.org/10.3390/electronics9030506.
Texto completo da fonteTeses / dissertações sobre o assunto "Medium Voltage DC"
Thomas, Stephan [Verfasser]. "A Medium-Voltage Multi-Level DC/DC Converter with High Voltage Transformation Ratio / Stephan Thomas". Aachen : Shaker, 2014. http://d-nb.info/1049383176/34.
Texto completo da fonteGowaid, Islam Azmy. "DC-DC converter designs for medium and high voltage direct current systems". Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27933.
Texto completo da fonteLA, GANGA ALESSANDRO. "Feasibility study of a Medium Voltage DC/DC Converter adopting WBG devices". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2950484.
Texto completo da fonteAboushady, Ahmed Adel. "Design, analysis, and modelling of modular medium-voltage DC/DC converter based systems". Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=18685.
Texto completo da fonteGebreab, Ermias K. "Interfacing of battery with a medium voltage DC-DC converter using MATLAB/Simulink". Kansas State University, 2013. http://hdl.handle.net/2097/15759.
Texto completo da fonteDepartment of Electrical and Computer Engineering
Sanjoy Das
Noel Schulz
Electrical power, although convenient form of energy to distribute and use, cannot easily be stored in large quantities economically. Most electrical power generated by utility plants is consumed simultaneously in real time. However, in some cases, energy storage systems become crucial when power generated from sources does not fulfill peak power load demand in a power system or energy storage systems are needed as backup. Due to these reasons, various technologies such as batteries, ultracapacitors (UC), superconducting magnetic energy storage (SEMS) and flywheels are beneficial options for energy storage systems. Shipboard power systems must use one or more energy storage systems in order to backup the existing power system if locally generated power is unavailable. This will lessen the effect of voltage sags on power quality, and improve system reliability. This report mainly focuses on the design of a Boost DC-DC converter and the integration of that converter with a previously designed battery storage model, as well as the effect of varying loads at the end of the converter.
Cui, Shenghui [Verfasser], Doncker Rik W. [Akademischer Betreuer] De e Rainer [Akademischer Betreuer] Marquardt. "Modular multilevel DC-DC converters interconnecting high-voltage and medium-voltage DC grids / Shenghui Cui ; Rik W. de Doncker, Rainer Marquardt". Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1195238002/34.
Texto completo da fonteZhao, Shishuo. "High Frequency Isolated Power Conversion from Medium Voltage AC to Low Voltage DC". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/74969.
Texto completo da fonteMaster of Science
Bosich, Daniele. "Medium Voltage DC integrated power systems for large all electric ships". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423756.
Texto completo da fonteLa distribuzione in media tensione continua (Medium Voltage Direct Current, MVDC) rappresenta una tecnologia promettente per i sistemi elettrici navali del futuro. A tal riguardo, negli ultimi anni, università e centri di ricerca hanno proposto soluzioni tecniche tali da raggiungere gli obiettivi propri della tecnologia MVDC: fra gli altri, risparmio di carburante, riduzione del peso/ingombro dell’impianto elettrico, riconfigurabilità a fronte di guasti e miglioramento della power quality. D’altra parte, la più grande sfida da affrontare riguarda la regolazione della tensione che deve risultare in grado di garantire il requisito fondamentale della stabilità. Relativamente a questo aspetto, una possibile instabilità si manifesta in presenza di convertitori di carico a banda elevata, modellizzabili come carichi a potenza costante (Constant Power Loads, CPLs). Tali carichi non-lineari vengono visti dal sistema come resistenze incrementali negative, le quali rappresentano la causa dell’instabilità della tensione a fronte di un disturbo (per esempio connessione di carico, disconnessione di un sistema di genenerazione). La tesi è stata realizzata presso il Laboratorio Grid Connected and Marine Electric Power Generation and Control (EPGC Lab.), presso l’Università degli Studi di Trieste. Lo scopo è quello di sviluppare strategie per il controllo della tensione in grado di risolvere la questione CPL, considerando un possibile impianto elettrico integrato (multi-convertitore) in MVDC, convenientemente progettato a partire dalla distribuzione reale MVAC di una nave da crociera. Nel sistema visto, l’instabilità di tensione può essere affrontata secondo diversi approcci, sfruttando soluzioni impiantistiche (aggiunta di filtraggio dedicato, aggiunta di energy storage) oppure soluzioni controllistiche. Il secondo approccio è quello seguito nella presente tesi: gli attuatori di tensione (convertitori DC/DC) vengono usati in questo caso per compensare l’instabilità di tensione. Quindi, da una parte (lato carico) i convertitori sono responsabili del problema dei carichi non-lineari, dall’altro (lato generatori) possono essere utilizzati per contribuire alla sua soluzione, garantendo un comportamento stabile. L’approccio stabilizzante previsto prevede l’utilizzo di diverse tecniche di controllo, analizzate nella tesi dal punto di vista teorico. A partire dalla tecnica semplice State Feedback (SF), altre due tecniche sono state studiate per il caso di sistema multi-converter, ovvero l’Active Damping (AD) e il Linearization via State Feedback (LSF). L’AD è un metodo di controllo per incrementare transitorialmente la resistenza dei filtri, in modo tale da smorzare le oscillazioni di tensione: uno dei principali vantaggi è quello relativo alla semplice ingegnerizzazione su controllori digitali, mentre lo svantaggio riguarda la limitata azione stabilizzante. Pertanto, strategie basate sull’AD devono considerarsi valide per stabilizzare sistemi non critici. D’altra parte, LSF è una tecnica molto valida per ottenere una buona cancellazione delle non-linearità dei CPL, per mezzo dell’azione di convertitori DC/DC in grado di applicare un’opportuna funzione di controllo non-lineare. A fronte di una notevole capacità nello stabilizzare sistemi critici, grande attenzione va posta nella stima della funzione di controllo: conoscenza inaccurata dei parametri o errori nei feedback ai controllori possono invalidare l’approccio LSF, causando una parziale cancellazione, quindi un sistema risultante non-lineare. Le simulazioni finali hanno lo scopo di testare le tecniche AD e LSF, implementate in strategie di controllo locale e globale: la prima strategia ha lo scopo di risolvere l’instabilità direttamente sui CPL, mentre la seconda assicura la stabilità del bus.
Qi, Qi. "Benefit analysis of using soft DC links in medium voltage distribution networks". Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/114978/.
Texto completo da fonteSoltau, Nils Verfasser], Doncker Rik W. [Akademischer Betreuer] [De e Antonello [Akademischer Betreuer] Monti. "High-power medium-voltage DC-DC converters : design, control and demonstration / Nils Soltau ; Rik W. de Doncker, Antonello Monti". Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1158599544/34.
Texto completo da fonteLivros sobre o assunto "Medium Voltage DC"
Chen, Wu, Guangfu Ning, Fang Liu e Defeng Xin. High Power Medium Voltage DC Grid-Connected Converter for Renewable Energy Generation. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4950-8.
Texto completo da fonteGrainger, Brandon, e Rik W. De Doncker, eds. Medium Voltage DC System Architectures. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/pbpo143e.
Texto completo da fonteDoncker, Rik W. De, e Brandon Grainger. Medium Voltage DC System Architectures. Institution of Engineering & Technology, 2022.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Medium Voltage DC"
Jiang, Songfang, Jun Liang, Kewen Wang, Jian Chen, Mengru Chen e Jiatong Yu. "Traveling Wave Protection of Medium Voltage DC Distribution Network". In Lecture Notes in Electrical Engineering, 1208–15. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1870-4_127.
Texto completo da fonteYunfeng, Jiang, Zhang Zhiping, Bao Hua, Wang Fei, Yang Xi, Jiang Qilong, Wang Aihua e Zhou Chengming. "The Research on Three-phase Medium-frequency DC High-voltage Power". In Electrostatic Precipitation, 354–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89251-9_71.
Texto completo da fonteZhong, Jianying, Wenkui Liu, Xiao Li, Longlong Wang, Sumin Pang e Peng Zhao. "Research on the Topology of Medium Voltage DC Hybrid Current Limiter". In The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering, 47–57. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6609-1_5.
Texto completo da fonteZhiming, Shi, Jia Ke, Wu Wenqiang, Chen Miao, Chen Cong e Liu Bohan. "Incipient Fault Identification Based Protection for a Medium Voltage DC Integration System". In Lecture Notes in Electrical Engineering, 77–92. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7156-2_6.
Texto completo da fonteWang, Beibei. "Research on Current Limiting Protection Method of Short Circuit Faults in Medium Voltage DC Integrated Power Systems". In Lecture Notes in Electrical Engineering, 417–25. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7413-9_39.
Texto completo da fonteKharezy, Mohammad, Morteza Eslamian e Torbjörn Thiringer. "Insulation Design of a Medium Frequency Power Transformer for a Cost-Effective Series High Voltage DC Collection Network of an Offshore Wind Farm". In Lecture Notes in Electrical Engineering, 1406–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31680-8_134.
Texto completo da fonteBeddingfield, Richard B., e Paul R. Ohodnicki Jr. "Medium frequency and medium voltage transformer technology for DC—DC converter applications". In Medium Voltage DC System Architectures, 201–27. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/pbpo143e_ch7.
Texto completo da fonteGrainger, Brandon, e Zachary Smith. "Modern control and mode visualization of bidirectional DC/DC converters". In Medium Voltage DC System Architectures, 177–200. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/pbpo143e_ch6.
Texto completo da fonteDe Doncker, Rik W., e Jingxin Hu. "Bidirectional isolated DC—DC converters— enabling technology for MVDC networks with distributed generation". In Medium Voltage DC System Architectures, 119–49. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/pbpo143e_ch4.
Texto completo da fonteWang, Fei (Fred), Yaosuo Xue e Le Kong. "MVDC stability: modeling, analysis, and enhancement approaches". In Medium Voltage DC System Architectures, 229–60. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/pbpo143e_ch8.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Medium Voltage DC"
Zhu, Wenqin, Haitian Wang, Yi Luo, Ruoyu Xu, Bin Du e Mingyu Zhou. "Development of a polypropylene insulation material for medium voltage AC and DC cables". In 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676279.
Texto completo da fonteBarati, F., Dan Li e R. A. Dougal. "Voltage regulation in medium voltage DC systems". In 2013 IEEE Electric Ship Technologies Symposium (ESTS 2013). IEEE, 2013. http://dx.doi.org/10.1109/ests.2013.6523763.
Texto completo da fonteLiu, B., E. K. A. Hussain, L. Liu, A. Fateh e S. Wang. "Isolated medium-voltage DC-DC power converter topologies". In 12th International Conference on Power Electronics, Machines and Drives (PEMD 2023). Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/icp.2023.1976.
Texto completo da fonteTran, Yan-Kim, e Drazen Dujic. "A multiport medium voltage isolated DC-DC converter". In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016. http://dx.doi.org/10.1109/iecon.2016.7793699.
Texto completo da fonteLiljestrand, Lars, Magnus Backman, Lars Jonsson, Edgar Dullni e Marco Riva. "Medium voltage DC vacuum circuit breaker". In 2015 3rd International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). IEEE, 2015. http://dx.doi.org/10.1109/icepe-st.2015.7368340.
Texto completo da fonteGaudreau, Marcel P. J., Neal Butler e Matthew Munderville. "Undersea medium voltage DC power distribution". In 2017 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2017. http://dx.doi.org/10.1109/ests.2017.8069289.
Texto completo da fonteAdam, G. P., F. Alsokhiry, Y. Al-Turki, M. O. Ajangnay e A. Y. Amogpai. "DC-DC Converters for Medium and High Voltage Applications". In IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2019. http://dx.doi.org/10.1109/iecon.2019.8926872.
Texto completo da fonteHoehn, Thomas, Francisco Blanquez, Karsten Kahle, Jean-Paul Burnet e Herwig Renner. "Voltage Dip Mitigation Techniques for Medium-Voltage DC Networks". In 2019 IEEE Third International Conference on DC Microgrids (ICDCM). IEEE, 2019. http://dx.doi.org/10.1109/icdcm45535.2019.9232912.
Texto completo da fonteDeng, Qiu, e Roger A. Dougal. "Fault Protection in Medium Voltage DC microgrids". In 2017 IEEE Second International Conference on DC Microgrids (ICDCM). IEEE, 2017. http://dx.doi.org/10.1109/icdcm.2017.8001023.
Texto completo da fonteHeidemann, Matthias, Gregor Nikolic, Armin Schnettler, Ala Qawasmi, Nils Soltau e Rik W. De Donker. "Circuit-breakers for medium-voltage DC grids". In 2016 IEEE PES Transmission & Distribution Conference and Exposition - Latin-America (PES T&D-LA). IEEE, 2016. http://dx.doi.org/10.1109/tdc-la.2016.7914153.
Texto completo da fonte