Literatura científica selecionada sobre o tema "Medical physics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Medical physics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Medical physics"
Wagner, L. K., M. J. Bronskill, G. T. Chen, T. L. Chenevert, E. Gardner, R. Gelse, M. Madsen, E. R. Ritenour, B. Schueler e J. A. Seibert. "Medical physics." Radiology 190, n.º 3 (março de 1994): 945–51. http://dx.doi.org/10.1148/radiology.190.3.8115661.
Texto completo da fonteLeuenberger, Ronald, Ryan Kocak, David W. Jordan e Tim George. "Medical Physics". Health Physics 115, n.º 4 (outubro de 2018): 512–22. http://dx.doi.org/10.1097/hp.0000000000000894.
Texto completo da fonteHuda, W., J. M. Boone, S. Connors, A. Fenster, J. C. Gore, J. C. Honeyman, M. Madsen, E. L. Nickoloff, R. M. Nishikawa e L. K. Wagner. "Medical physics." Radiology 198, n.º 3 (março de 1996): 941–49. http://dx.doi.org/10.1148/radiology.198.3.8628902.
Texto completo da fonteMishkat Ali Jafri e Intikhab Ulfat. "Medical Physics." International Journal of Endorsing Health Science Research 11, n.º 4 (1 de dezembro de 2023): 169–70. http://dx.doi.org/10.29052/ijehsr.v11.i4.2023.169-170.
Texto completo da fonteMahesh, Mahadevappa. "Medical Physics 3.0". Journal of the American College of Radiology 18, n.º 12 (dezembro de 2021): 1596–97. http://dx.doi.org/10.1016/j.jacr.2021.10.002.
Texto completo da fonteSamei, Ehsan. "Medical Physics 3.0". Health Physics 116, n.º 2 (fevereiro de 2019): 247–55. http://dx.doi.org/10.1097/hp.0000000000001022.
Texto completo da fonteFeder, Toni. "Medical Physics Fellowships". Physics Today 55, n.º 3 (março de 2002): 33. http://dx.doi.org/10.1063/1.4796677.
Texto completo da fonteGibson, A. P., E. Cook e A. Newing. "Teaching Medical Physics". Physics Education 41, n.º 4 (20 de junho de 2006): 301–6. http://dx.doi.org/10.1088/0031-9120/41/4/001.
Texto completo da fonteVu, Hoang T. "Medical Health Physics". Health Physics 92, n.º 2 (fevereiro de 2007): 187. http://dx.doi.org/10.1097/01.hp.0000252347.45110.71.
Texto completo da fonteReddy, AR. "Medical Radiological Physics". Journal of Medical Physics 37, n.º 3 (2012): 163. http://dx.doi.org/10.4103/0971-6203.99241.
Texto completo da fonteTeses / dissertações sobre o assunto "Medical physics"
Lazarine, Alexis D. "Medical physics calculations with MCNP: a primer". Texas A&M University, 2006. http://hdl.handle.net/1969.1/4297.
Texto completo da fonteRolland, Jannick Paule Yvette. "Factors influencing lesion detection in medical imaging". Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185096.
Texto completo da fonteGharama, Huda. "A Planar Lightguide Power Combiner for Medical Applications". University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1508173552760426.
Texto completo da fonteRedd, Randall Alex. "Radiation dosimetry and medical physics calculations using MCNP 5". Texas A&M University, 2004. http://hdl.handle.net/1969.1/467.
Texto completo da fonteWang, Yi Zhen 1965. "Photoneutrons and induced activity from medical linear accelerators". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81453.
Texto completo da fonteFörster, Fabian Alexander. "Novel CMOS Devices for High Energy Physics and Medical Applications". Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670504.
Texto completo da fonteLos experimentos de física de alta energía (HEP) en colisionadores de partículas sondean nuestra comprensión de la estructura y la dinámica de la materia. Para avanzar en el campo, los sistemas de aceleración se actualizan periódicamente a mayores energías y luminosidades. Los experimentos tienen que mantenerse al día, mejorando la instrumentación de su detector. Los detectores de píxeles de silicio desempeñan un papel fundamental en los experimentos con HEP. Gracias a su excelente resolución de posición, compacidad, velocidad y dureza de radiación, permiten la reconstrucción de pistas de partículas en entornos de alta radiación como colisionadores de hadrones. A su vez, su rendimiento permite una excelente resolución de parámetros de impacto en la pista, un ingrediente clave para la identificación secundaria de vértices y el etiquetado de chorro b. Actualmente, el detector de píxeles estándar consta de un sensor segmentado, en el que cada píxel está conectado a un canal de lectura de un circuito integrado de aplicación específica (ASIC) a través de una técnica complicada y costosa llamada unión por golpes. Un enfoque alternativo a los dispositivos de píxeles híbridos son los detectores monolíticos, que combinan la detección de partículas y las tareas de procesamiento de señales en el mismo sustrato. Estos tipos de detectores desarrollados en el proceso CMOS se han utilizado en el pasado, pero solo relativamente recientemente basados en dispositivos de radiación dura sobre esta tecnología se han propuesto. En esta tesis, se investiga un primer prototipo de tamaño completo de un detector monolítico desarrollado en la tecnología CMOS de alto voltaje (HV-CMOS) como un dispositivo de píxeles para las capas externas del rastreador ATLAS de actualización futura, que se encuentra en el Gran Colisionador de Hadrones ( LHC) en el CERN. Además de la aplicación de esta tecnología en experimentos HEP, la detección de fotones de rayos X blandos también se investiga en una matriz en uno de los detectores de píxeles HV-CMOS. Por último, se explora el uso de dispositivos CMOS para la detección de fotones de infrarrojo cercano (NIR) con Avalanche Photodiode (APD).
High Energy Physics (HEP) experiments at particle colliders probe our understanding of the structure and dynamics of matter. In order to advance the field, the accelerator systems are periodically upgraded to higher energies and luminosities. Experiments have to keep up, by improving their detector instrumentation. Silicon pixel detectors play a critical role in HEP experiments. Thanks to their excellent position resolution, compactness, speed and radiation hardness, they enable particle track reconstruction in high radiation environments like hadron colliders. In turn, their performance allows excellent track impact parameter resolution, a key ingredient for secondary vertex identification and jet b-tagging. Currently the standard pixel detector consists of a segmented sensor, in which each pixel is connected to a readout channel of an Application-Specific Integrated Circuit (ASIC) through a complicated, and expensive, technique called bump bonding. An alternative approach to hybrid pixel devices are monolithic detectors, which combine the particle sensing and the signal processing tasks in the same substrate.These kinds of detectors developed in the CMOS process have been used in the past, but only relatively recently radiation hard devices based on this technology have been proposed. In this thesis a first full size prototype of a monolithic detector developed in the High Voltage CMOS (HV-CMOS) technology is investigated as a pixel device for the outer layers of the future upgrade ATLAS tracker, which is located in the Large Hadron Collider (LHC) at CERN. Besides the application of this technology in HEP experiments, the detection of soft X-ray photons is also investigated in one matrix in one of the HV-CMOS pixel detectors. Lastly, the usage of CMOS devices for the detection of Near-Infrared (NIR) photons with Avalanche Photodiode (APD) is explored.
Andrews, Brian. "Computational Solutions for Medical Issues in Ophthalmology". Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case15275972120621.
Texto completo da fonteScannavini, Maria Giulia. "Medical Compton cameras based on semiconductor detectors". Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251785.
Texto completo da fonteRatcliffe, Naomi. "Potential of a compact low energy proton accelertor for medical applications". Thesis, University of Huddersfield, 2014. http://eprints.hud.ac.uk/id/eprint/23711/.
Texto completo da fonteLazarus, Graeme Lawrence. "Validation of Monte Carlo-based calculations for small irregularly shaped intra-operative radiotherapy electron beams". Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/16680.
Texto completo da fonteLivros sobre o assunto "Medical physics"
Hollins, Martin. Medical physics. Walton-on-Thames: Nelson, 1992.
Encontre o texto completo da fontePeet, Debbie, e Emma Chung. Practical Medical Physics. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425.
Texto completo da fontePope, Jean A. Medical physics: Imaging. Oxford: Heinemann, 1999.
Encontre o texto completo da fonte1953-, Ritenour E. Russell, e Hendee William R, eds. Medical imaging physics. 3a ed. St. Louis: Mosby Year Book, 1992.
Encontre o texto completo da fonteE, Williams Lawrence, ed. Nuclear medical physics. Boca Raton, FL: CRC Press, 1987.
Encontre o texto completo da fonte1953-, Ritenour E. Russell, ed. Medical imaging physics. 4a ed. New York: Wiley-Liss, 2002.
Encontre o texto completo da fonteSociety, Biological Engineering. Medical engineering & physics. Oxford, UK: Butterworth-Heinemann, 1994.
Encontre o texto completo da fonteKeevil, Stephen, Renato Padovani, Slavik Tabakov, Tony Greener e Cornelius Lewis. Introduction to Medical Physics. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155758.
Texto completo da fonteSun, Jidi. MATLAB for Medical Physics. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7565-3.
Texto completo da fonteInternational Symposium on Physics of Medical Imaging and Advances in Computer Applications (1990). Physics of medical imaging. Editado por Rehani M. M. Delhi: Macmillan India, 1991.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Medical physics"
Patel, Nisha R., Michael L. Wong, Anthony E. Dragun, Stephan Mose, Bernadine R. Donahue, Jay S. Cooper, Filip T. Troicki et al. "Medical Physics". In Encyclopedia of Radiation Oncology, 490–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_762.
Texto completo da fonteHendee, William R., e Michael Yester. "Medical Physics". In AIP Physics Desk Reference, 467–91. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_15.
Texto completo da fonteMenon, Geetha. "Basic Medical Physics". In Radiotherapy in Skin Cancer, 25–38. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-44316-9_2.
Texto completo da fonteWynn-Jones, Andrea, Caroline Reddy, John Gittins, Philip Baker, Anna Mason e Greg Jolliffe. "Radiotherapy Physics". In Practical Medical Physics, 155–202. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-6-8.
Texto completo da fonteChung, Emma, e Justyna Janus. "Ultrasound Physics". In Practical Medical Physics, 51–69. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-3-4.
Texto completo da fonteAmestoy, William. "Radiation Physics". In Review of Medical Dosimetry, 1–108. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13626-4_1.
Texto completo da fonteTao, Chen, Zhang Ting, Wang Guang Chang, Zhou Ji Fang, Zhang Jian Wei e Liu Yu Hong. "Medical Physics Curriculum Reform". In Lecture Notes in Electrical Engineering, 715–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24820-7_114.
Texto completo da fonteRajan, K. N. Govinda. "Basic Medical Radiation Physics". In Radiation Safety in Radiation Oncology, 25–94. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315119656-2.
Texto completo da fonteSprawls, Perry. "Medical Physics, an Introduction". In Introduction to Medical Physics, 1–13. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155758-1.
Texto completo da fonteChowdhury, Alimul. "Magnetic Resonance Imaging Physics". In Practical Medical Physics, 25–49. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-2-3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Medical physics"
Kralova, Eva. "ATTITUDES OF MEDICAL STUDENTS TOWARDS PHYSICS AND MEDICAL PHYSICS". In 12th annual International Conference of Education, Research and Innovation. IATED, 2019. http://dx.doi.org/10.21125/iceri.2019.0799.
Texto completo da fonteTrujillo Zamudio, Flavio E., María-Ester Brandan, Isabel Gamboa-deBuen, Gerardo Herrera-Corral e Luis A. Medina-Velázquez. "Preface: Medical Physics". In MEDICAL PHYSICS: Twelfth Mexican Symposium on Medical Physics. AIP, 2012. http://dx.doi.org/10.1063/1.4764583.
Texto completo da fonteMower, Herbert W., e Hakeem M. Oluseyi. "Medical Physics Professional Societies". In 007. AIP, 2008. http://dx.doi.org/10.1063/1.2905132.
Texto completo da fontePadmapriya, K., e P. Ezhumalai. "Equipping the medical images for medical diagnosis". In WOMEN IN PHYSICS: 7th IUPAP International Conference on Women in Physics. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0182366.
Texto completo da fonteZárate-Morales, A., M. Rodrı́guez-Villafuerte, F. Martı́nez-Rodrı́guez e N. Arévila-Ceballos. "Determination of left ventricular mass through SPECT imaging". In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56376.
Texto completo da fonteWright, Steven M. "RF coil arrays in MRI". In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56377.
Texto completo da fonteRuiz, C., A. E. Buenfil, I. Gamboa-deBuen, M. Rodrı́guez-Villafuerte, P. Avilés, C. Olvera e M. E. Brandan. "A novel method to use radiochromic dye films to determine dose under proton irradiation". In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56372.
Texto completo da fonteAranda, S., e H. Aranda-Espinoza. "Virus—Cell—Fusion". In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56373.
Texto completo da fonteHuerta, R., A. Hernández e J. J. Alvarado-Gil. "On the motility of living invertebrates The case of". In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56374.
Texto completo da fonteMendoza-Alvarez, Julio G. "Biochips: A fruitful product of solid state physics and molecular biology". In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56375.
Texto completo da fonteRelatórios de organizações sobre o assunto "Medical physics"
Herman, Michael, A. Harms, Kenneth Hogstrom, Eric Klein, Lawrence Reinstein, Lawrence Rothenberg, Brian Wichman et al. Alternative Clinical Medical Physics Training Pathways for Medical Physicists. AAPM, agosto de 2008. http://dx.doi.org/10.37206/119.
Texto completo da fontePaliwal, Bhudatt R., James C. H. Chu, Paul M. DeLuca, Arnold Feldman, Ellen E. Grein, Donald E. Herbert, Edward F. Jackson et al. Academic Program Recommendations for Graduate Degrees in Medical Physics. AAPM, 2002. http://dx.doi.org/10.37206/79.
Texto completo da fonteHalvorsen, Per H., Julie F. Dawson, Martin W. Fraser, Geoffrey S. Ibbott e Bruce R. Thomadsen. The Solo Practice of Medical Physics in Radiation Oncology. AAPM, 2003. http://dx.doi.org/10.37206/80.
Texto completo da fontePrisciandaro, Joann, Charles Willis, Jay Burmeister, Geoffrey Clarke, Rupak Das, Jacqueline Esthappan, Bruce Gerbi et al. Essentials and Guidelines for Clinical Medical Physics Residency Training Programs. AAPM, outubro de 2013. http://dx.doi.org/10.37206/149.
Texto completo da fonteJr., Paul M. DeLuca, F. H. Attix, Daniel A. Bassano, J. Larry Beach, L. Stephen Graham, David Gur, Gerda B. Krefft et al. Academic Program for Master of Science Degree in Medical Physics. AAPM, 1993. http://dx.doi.org/10.37206/43.
Texto completo da fonteDeluca, Paul, Ellen Grein, Donald Herbert, Edward Jackson, Ervin Podgorsak, E. Russell Ritenour, Jennifer Smilowitz, George Starkschall e Frank Verhaegen. Academic Program Recommendations for Graduate Degrees in Medical Physics (2009). Chair Bhudatt Paliwal. American Association of Physicists in Medicine, abril de 2009. http://dx.doi.org/10.37206/197.
Texto completo da fonteSternick, Edward S., Richard G. Evans, E. Roblert Heitzman, James G. Kereiakes, Edwin C. McCullough, Richard L. Morin, J. Thomas Payne et al. Essentials and Guidelines for Hospital Based Medical Physics Residency Training Programs. AAPM, 1990. http://dx.doi.org/10.37206/35.
Texto completo da fonteLane, Richard G., Donna M. Stevens, John P. Gibbons, Lynn J. Verhey, Kenneth R. Hogstrom, Edward L. Chaney, Melissa C. Martin et al. Essentials and Guidelines for Hospital-Based Medical Physics Residency Training Programs. AAPM, 2006. http://dx.doi.org/10.37206/91.
Texto completo da fonteHetzel, Fred W., Suresh M. Brahmavar, Qun Chen, Steven L. Jacques, Michael S. Patterson, Brian C. Wilson e Timothy C. Zhu. Photodynamic Therapy Dosimetry: A Task Group Report of the General Medical Physics Committee of the Science Council. AAPM, 2005. http://dx.doi.org/10.37206/89.
Texto completo da fonteGress, Dustin, David Jordan, Priscilla Butler, Jessica Clements, Kenneth Coleman, David Lloyd Goff, Melissa Martin et al. An Updated Description of the Professional Practice of Diagnostic and Imaging Medical Physics: The Report of AAPM Diagnostic Work and Workforce Study Subcommittee. AAPM, maio de 2017. http://dx.doi.org/10.37206/163.
Texto completo da fonte