Artigos de revistas sobre o tema "Mechanical-chemical coupling"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Mechanical-chemical coupling".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Taniguchi, Yuichi, Masayoshi Nishiyama, Yoshiharu Ishii e Toshio Yanagida. "2P231 Loose coupling between chemical reaction and mechanical work in kinesin(38. Chemo-mechanical coupling,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S353. http://dx.doi.org/10.2142/biophys.46.s353_3.
Texto completo da fontedo Nascimento, Rodney Marcelo, Adrien Baldit, Ninel Kokanyan, Lara Kristin Tappert, Paul Lipinski, Antônio Carlos Hernandes e Rachid Rahouadj. "Mechanical-chemical coupling in Temporomandibular Joint disc". Materialia 9 (março de 2020): 100549. http://dx.doi.org/10.1016/j.mtla.2019.100549.
Texto completo da fonteKlika, Václav, e František Maršík. "Coupling Effect between Mechanical Loading and Chemical Reactions". Journal of Physical Chemistry B 113, n.º 44 (5 de novembro de 2009): 14689–97. http://dx.doi.org/10.1021/jp903054y.
Texto completo da fonteZHANG, YUNXIN. "LOOSE MECHANOCHEMICAL COUPLING OF MOLECULAR MOTORS". Modern Physics Letters B 26, n.º 21 (16 de julho de 2012): 1250137. http://dx.doi.org/10.1142/s0217984912501370.
Texto completo da fontePanicaud, Benoit. "On the Use of the Generalized Eigenstrain Method in the Modeling of Coupling between Damage and Corrosion". Applied Mechanics and Materials 784 (agosto de 2015): 59–67. http://dx.doi.org/10.4028/www.scientific.net/amm.784.59.
Texto completo da fonteHu, Dawei, Hui Zhou, Qizhi Hu, Jianfu Shao, Xiating Feng e Haibin Xiao. "A hydro-mechanical-chemical coupling model for geomaterial with both mechanical and chemical damages considered". Acta Mechanica Solida Sinica 25, n.º 4 (agosto de 2012): 361–76. http://dx.doi.org/10.1016/s0894-9166(12)60033-0.
Texto completo da fonteOh, Seunghee, e Jongwon Seok. "Modeling of chemical–mechanical polishing considering thermal coupling effects". Microelectronic Engineering 85, n.º 11 (novembro de 2008): 2191–201. http://dx.doi.org/10.1016/j.mee.2008.04.037.
Texto completo da fonteLembong, Josephine, Bo Sun, Matthew Rogers e Howard A. Stone. "Coupling of Chemical and Mechanical Sensing in Fibroblast Cells". Biophysical Journal 106, n.º 2 (janeiro de 2014): 241a. http://dx.doi.org/10.1016/j.bpj.2013.11.1415.
Texto completo da fonteCaruel, Matthieu, Philippe Moireau e Dominique Chapelle. "Stochastic modeling of chemical–mechanical coupling in striated muscles". Biomechanics and Modeling in Mechanobiology 18, n.º 3 (3 de janeiro de 2019): 563–87. http://dx.doi.org/10.1007/s10237-018-1102-z.
Texto completo da fonteGe, Shangqi, Yue Ma, Kai Wang, Lingwei Zheng, Xinyu Xie, Xiaohui Chen e Hai-Sui Yu. "Unsaturated hydro-mechanical-electro-chemical coupling based on mixture-coupling theory: a unified model". International Journal of Engineering Science 191 (outubro de 2023): 103914. http://dx.doi.org/10.1016/j.ijengsci.2023.103914.
Texto completo da fonteCastelli, Giuseppe F., Lars von Kolzenberg, Birger Horstmann, Arnulf Latz e Willy Dörfler. "Efficient Simulation of Chemical–Mechanical Coupling in Battery Active Particles". Energy Technology 9, n.º 6 (5 de maio de 2021): 2000835. http://dx.doi.org/10.1002/ente.202000835.
Texto completo da fonteDas, Tridip, Jason D. Nicholas, Brian W. Sheldon e Yue Qi. "Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles". Physical Chemistry Chemical Physics 20, n.º 22 (2018): 15293–99. http://dx.doi.org/10.1039/c8cp01219a.
Texto completo da fonteZhang, Shiyi, e Qiang Shen. "A Phase-Field Regularized Cohesion Model for Hydrogen-Assisted Cracking". Coatings 14, n.º 2 (4 de fevereiro de 2024): 202. http://dx.doi.org/10.3390/coatings14020202.
Texto completo da fonteCurà, Francesca, Andrea Mura e Raffaella Sesana. "Experimental investigation of fatigue and aging performance of automotive exhaust flexible couplings". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229, n.º 7 (28 de agosto de 2014): 1215–23. http://dx.doi.org/10.1177/0954406214549268.
Texto completo da fonteYan, Chuanliang, Jingen Deng e Baohua Yu. "Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling". Scientific World Journal 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/720271.
Texto completo da fonteTraversari, Gabriele, Andrea Porcheddu, Giorgio Pia, Francesco Delogu e Alberto Cincotti. "Coupling of mechanical deformation and reaction in mechanochemical transformations". Physical Chemistry Chemical Physics 23, n.º 1 (2021): 229–45. http://dx.doi.org/10.1039/d0cp05647b.
Texto completo da fonteYI, Wei, Qiu-hua RAO, Zhuo LI, Dong-liang SUN e Qing-qing SHEN. "Thermo-hydro-mechanical-chemical (THMC) coupling fracture criterion of brittle rock". Transactions of Nonferrous Metals Society of China 31, n.º 9 (setembro de 2021): 2823–35. http://dx.doi.org/10.1016/s1003-6326(21)65696-0.
Texto completo da fonteXuan, Fu-Zhen, Shan-Shan Shao, Zhengdong Wang e Shan-Tung Tu. "Coupling effects of chemical stresses and external mechanical stresses on diffusion". Journal of Physics D: Applied Physics 42, n.º 1 (4 de dezembro de 2008): 015401. http://dx.doi.org/10.1088/0022-3727/42/1/015401.
Texto completo da fonteFabre, Nicolas, Stéphane Perrey, Loïc Arbez e Jean-Denis Rouillon. "Neuro-mechanical and chemical influences on locomotor respiratory coupling in humans". Respiratory Physiology & Neurobiology 155, n.º 2 (fevereiro de 2007): 128–36. http://dx.doi.org/10.1016/j.resp.2006.04.015.
Texto completo da fonteYanagida, T. "Loose coupling between chemical and mechanical reactions in actomyosin energy transduction". Advances in Biophysics 26 (1990): 75–95. http://dx.doi.org/10.1016/0065-227x(90)90008-h.
Texto completo da fonteZhuang, Yan, Tiantian Zhang, Xiangjun Liu, Shifeng Zhang, Lixi Liang, Jian Xiong e Xiaojian Zhang. "Mechanism of microfracture propagation under mechanical–chemical coupling conditions considering dissolution". Geoenergy Science and Engineering 245 (fevereiro de 2025): 213544. http://dx.doi.org/10.1016/j.geoen.2024.213544.
Texto completo da fonteKawada, Tatsuya. "(Invited) Chemo-Mechanical Coupling Phenomena in Solid Oxide Fuel Cells". ECS Meeting Abstracts MA2018-01, n.º 32 (13 de abril de 2018): 1930. http://dx.doi.org/10.1149/ma2018-01/32/1930.
Texto completo da fonteDe Corato, Marco, e Ignacio Pagonabarraga. "Onsager reciprocal relations and chemo-mechanical coupling for chemically active colloids". Journal of Chemical Physics 157, n.º 8 (28 de agosto de 2022): 084901. http://dx.doi.org/10.1063/5.0098425.
Texto completo da fonteTang, Quan, Qing Yu Lin, Zhi Zhang e You Wang. "Research on Preparation of Heavy Calcium Carbonate Functional Filler with Mechanical Chemical Methods". Advanced Materials Research 1089 (janeiro de 2015): 354–58. http://dx.doi.org/10.4028/www.scientific.net/amr.1089.354.
Texto completo da fonteLiu, Wenyuan, Wei Xia e Shengping Shen. "Fully Coupling Chemomechanical Yield Theory Based on Evolution Equations". International Journal of Applied Mechanics 08, n.º 04 (junho de 2016): 1650058. http://dx.doi.org/10.1142/s1758825116500587.
Texto completo da fonteDing, Wu Xiu, Xia Ting Feng e Bing Rui Chen. "Study on the Mechanical Property and the Evolutionary Neural Network Constitutive Model for Limestone under Chemical Corrosive Environments". Key Engineering Materials 340-341 (junho de 2007): 1169–74. http://dx.doi.org/10.4028/www.scientific.net/kem.340-341.1169.
Texto completo da fonteRios, E., e G. Pizarro. "Voltage Sensors and Calcium Channels of Excitation-Contraction Coupling". Physiology 3, n.º 6 (1 de dezembro de 1988): 223–27. http://dx.doi.org/10.1152/physiologyonline.1988.3.6.223.
Texto completo da fonteWhittaker, Michael L., Laura N. Lammers, Sergio Carrero, Benjamin Gilbert e Jillian F. Banfield. "Ion exchange selectivity in clay is controlled by nanoscale chemical–mechanical coupling". Proceedings of the National Academy of Sciences 116, n.º 44 (16 de outubro de 2019): 22052–57. http://dx.doi.org/10.1073/pnas.1908086116.
Texto completo da fontePoulet, T., A. Karrech, K. Regenauer-Lieb, L. Fisher e P. Schaubs. "Thermal–hydraulic–mechanical–chemical coupling with damage mechanics using ESCRIPTRT and ABAQUS". Tectonophysics 526-529 (março de 2012): 124–32. http://dx.doi.org/10.1016/j.tecto.2011.12.005.
Texto completo da fonteWang, Jun, Diao Yang e Huan Liu. "Simulation study on erosion of barrel under thermal-mechanical-chemical coupling environment". Journal of Physics: Conference Series 2478, n.º 7 (1 de junho de 2023): 072056. http://dx.doi.org/10.1088/1742-6596/2478/7/072056.
Texto completo da fonteLiu, Yu, Hongtao Gu, Bin Zhao, Zhiyi Leng, Jian Yin e Shengfang Zhang. "Fatigue Life Analysis of Hydrogen Production Reactor Welds Under Thermal-mechanical-chemical Coupling". Advances in Engineering Technology Research 9, n.º 1 (2 de janeiro de 2024): 269. http://dx.doi.org/10.56028/aetr.9.1.269.2024.
Texto completo da fonteSinar, A. A., B. I. Sea e Daud Yusrina Mat. "The Effect of Chemical Modification on Properties of Polypropylene/Bagasse Fiber Composites Compounding Using Two Roll Mill". Advanced Materials Research 795 (setembro de 2013): 611–15. http://dx.doi.org/10.4028/www.scientific.net/amr.795.611.
Texto completo da fonteLendvai, László, e Dávid Brenn. "Mechanical, Morphological and Thermal Characterization of Compatibilized Poly(lactic acid)/Thermoplastic Starch Blends". Acta Technica Jaurinensis 13, n.º 1 (14 de fevereiro de 2020): 1–13. http://dx.doi.org/10.14513/actatechjaur.v13.n1.532.
Texto completo da fonteSethi, Rashmi Ranjan, e Shakti Prasanna Khadanga. "Mechanical and Thermal Characterization of Bauhinia Vahlii Reinforced PP Composite". YMER Digital 21, n.º 07 (31 de julho de 2022): 1395–411. http://dx.doi.org/10.37896/ymer21.07/b6.
Texto completo da fonteChen, XiaoHui, William Pao, Steven Thornton e Joe Small. "Unsaturated hydro-mechanical–chemical constitutive coupled model based on mixture coupling theory: Hydration swelling and chemical osmosis". International Journal of Engineering Science 104 (julho de 2016): 97–109. http://dx.doi.org/10.1016/j.ijengsci.2016.04.010.
Texto completo da fonteSuo, Yaohong, Hai Hu e Jin Liu. "Fully chemo‐mechanical coupling analysis of a spherical electrode with reversible chemical reaction". International Journal of Energy Research 45, n.º 6 (19 de janeiro de 2021): 9667–76. http://dx.doi.org/10.1002/er.6430.
Texto completo da fonteMa, Tianshou, e Ping Chen. "A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs". Journal of Natural Gas Science and Engineering 26 (setembro de 2015): 72–98. http://dx.doi.org/10.1016/j.jngse.2015.05.028.
Texto completo da fonteCui, Lizhuang, Nan Qin, Shuai Wang e Xuezhi Feng. "Experimental Study on the Mechanical Properties of Sandstone under the Action of Chemical Erosion and Freeze-Thaw Cycles". Advances in Civil Engineering 2021 (1 de março de 2021): 1–14. http://dx.doi.org/10.1155/2021/8884079.
Texto completo da fonteLiu, Yin, Hao Li e Haifeng Wu. "Experimental Study on Mechanical Properties of Cemented Paste Backfill under Temperature-Chemical Coupling Conditions". Advances in Materials Science and Engineering 2019 (16 de novembro de 2019): 1–10. http://dx.doi.org/10.1155/2019/9754790.
Texto completo da fonteGao, Xiang, Daining Fang e Jianmin Qu. "A chemo-mechanics framework for elastic solids with surface stress". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, n.º 2182 (outubro de 2015): 20150366. http://dx.doi.org/10.1098/rspa.2015.0366.
Texto completo da fonteMargavi, Mohammad Reza Amiri, Mohammad Talaeipour, AmirHooman Hemmasi, Behzad Bazyar e Ismaeil Ghasemi. "Fabrication of novel biocomposite made of chemically treated sludge fibers and various molecular weight polypropylene". BioResources 18, n.º 2 (28 de março de 2023): 3479–95. http://dx.doi.org/10.15376/biores.18.2.3479-3495.
Texto completo da fonteAnyszka, Rafal, Karolina Beton, Maja Szczechowicz, Dariusz M. Bielinski e Anke Blume. "VELCRO-INSPIRED SUPRAMOLECULAR SYSTEM FOR SILICA–RUBBER COUPLING". Rubber Chemistry and Technology 93, n.º 4 (1 de outubro de 2020): 672–82. http://dx.doi.org/10.5254/rct.20.79966.
Texto completo da fonteLi, Guangsong. "Surface Damage Coupling Mechanism of Plain Weave Art Ceramic Matrix Composites". Journal of Chemistry 2022 (27 de maio de 2022): 1–7. http://dx.doi.org/10.1155/2022/3519967.
Texto completo da fonteWu, Gang, Alan Wong e Suning Wang. "Solid-state 25Mg NMR, X-ray crystallographic, and quantum mechanical study of bis(pyridine)-(5,10,15,20-tetraphenyl porphyrinato)magnesium(II)". Canadian Journal of Chemistry 81, n.º 4 (1 de abril de 2003): 275–83. http://dx.doi.org/10.1139/v03-036.
Texto completo da fonteRaja, Shilpa N., Jessica G. Swallow, Sean R. Bishop, Yen-Ting Chi, Ting Chen, Nicola H. Perry, Harry L. Tuller e Krystyn J. Van Vliet. "Analysis of Electrochemomechanical Coupling in Non-Stoichiometric Oxide Thin Films". ECS Meeting Abstracts MA2018-01, n.º 32 (13 de abril de 2018): 1933. http://dx.doi.org/10.1149/ma2018-01/32/1933.
Texto completo da fonteYu, Jingbo, Zikun Hong, Xinjie Yang, Yu Jiang, Zhijiang Jiang e Weike Su. "Bromide-assisted chemoselective Heck reaction of 3-bromoindazoles under high-speed ball-milling conditions: synthesis of axitinib". Beilstein Journal of Organic Chemistry 14 (6 de abril de 2018): 786–95. http://dx.doi.org/10.3762/bjoc.14.66.
Texto completo da fonteAhn, Byungkyu, Jong-Yeop Lee, Donghyuk Kim, Il Jin Kim, Sangwook Han e Wonho Kim. "EFFECTS OF SILANE AGENTS AND CURING TEMPERATURES ON VULCANIZATE STRUCTURES". Rubber Chemistry and Technology 93, n.º 2 (17 de setembro de 2019): 414–28. http://dx.doi.org/10.5254/rct.19.80445.
Texto completo da fonteZHAO, TONG-JUN, YONG-HONG WANG, HAI-LONG AN, YONG ZHAN, WEI-LI YAN e YI-ZHONG ZHUO. "MECHANOCHEMICAL COUPLING OF MOLECULAR MOTORS WITH NONCONSERVATIVE FORCE". International Journal of Modern Physics B 18, n.º 17n19 (30 de julho de 2004): 2762–65. http://dx.doi.org/10.1142/s0217979204026056.
Texto completo da fonteWang, Yueyi, Hai Shi, Xuanhong Hao, Hongxi Liu e Xiaowei Zhang. "Microstructure and Wear Resistance of Fe60 Laser Cladding Coating Assisted by Steady Magnetic Field–Mechanical Vibration Coupling Field". Coatings 12, n.º 6 (31 de maio de 2022): 751. http://dx.doi.org/10.3390/coatings12060751.
Texto completo da fonteKubo, Yusuke, Kentarou Baba, Michinori Toriyama, Takunori Minegishi, Tadao Sugiura, Satoshi Kozawa, Kazushi Ikeda e Naoyuki Inagaki. "Shootin1–cortactin interaction mediates signal–force transduction for axon outgrowth". Journal of Cell Biology 210, n.º 4 (10 de agosto de 2015): 663–76. http://dx.doi.org/10.1083/jcb.201505011.
Texto completo da fonte