Artigos de revistas sobre o tema "Maxwell's equations in time domain"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Maxwell's equations in time domain".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Huang, Zhi-Xiang, Wei Sha, Xian-Liang Wu e Ming-Sheng Chen. "Decomposition methods for time-domain Maxwell's equations". International Journal for Numerical Methods in Fluids 56, n.º 9 (2008): 1695–704. http://dx.doi.org/10.1002/fld.1569.
Texto completo da fonteBao, Gang, Bin Hu, Peijun Li e Jue Wang. "Analysis of time-domain Maxwell's equations in biperiodic structures". Discrete & Continuous Dynamical Systems - B 25, n.º 1 (2020): 259–86. http://dx.doi.org/10.3934/dcdsb.2019181.
Texto completo da fonteVan, Tri, e Aihua Wood. "A Time-Domain Finite Element Method for Maxwell's Equations". SIAM Journal on Numerical Analysis 42, n.º 4 (janeiro de 2004): 1592–609. http://dx.doi.org/10.1137/s0036142901387427.
Texto completo da fonteAla, G., E. Francomano, A. Tortorici, E. Toscano e F. Viola. "Corrective meshless particle formulations for time domain Maxwell's equations". Journal of Computational and Applied Mathematics 210, n.º 1-2 (dezembro de 2007): 34–46. http://dx.doi.org/10.1016/j.cam.2006.10.054.
Texto completo da fonteLiu, Yaxing, Joon-Ho Lee, Tian Xiao e Qing H. Liu. "A spectral-element time-domain solution of Maxwell's equations". Microwave and Optical Technology Letters 48, n.º 4 (2006): 673–80. http://dx.doi.org/10.1002/mop.21440.
Texto completo da fonteBuchanan, W. J., e N. K. Gupta. "Maxwell's Equations in the 21st Century". International Journal of Electrical Engineering & Education 30, n.º 4 (outubro de 1993): 343–53. http://dx.doi.org/10.1177/002072099303000408.
Texto completo da fonteNevels, R., e J. Jeong. "The Time Domain Green's Function and Propagator for Maxwell's Equations". IEEE Transactions on Antennas and Propagation 52, n.º 11 (novembro de 2004): 3012–18. http://dx.doi.org/10.1109/tap.2004.835123.
Texto completo da fonteCohen, Gary, Xavier Ferrieres e Sébastien Pernet. "Discontinuous Galerkin methods for Maxwell's equations in the time domain". Comptes Rendus Physique 7, n.º 5 (junho de 2006): 494–500. http://dx.doi.org/10.1016/j.crhy.2006.03.004.
Texto completo da fonteSu, Zhuo, Yongqin Yang e Yunliang Long. "A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations". International Journal of Antennas and Propagation 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/689327.
Texto completo da fonteWang, J., e Y. Long. "Long time stable compact fourth-order scheme for time domain Maxwell's equations". Electronics Letters 46, n.º 14 (2010): 995. http://dx.doi.org/10.1049/el.2010.1204.
Texto completo da fonteDeore, Narendra, e Avijit Chatterjee. "CELL-VERTEX BASED MULTIGRID SOLUTION OF THE TIME-DOMAIN MAXWELL'S EQUATIONS". Progress In Electromagnetics Research B 23 (2010): 181–97. http://dx.doi.org/10.2528/pierb10062002.
Texto completo da fonteSha, Wei, Zhixiang Huang, Mingsheng Chen e Xianliang Wu. "Survey on Symplectic Finite-Difference Time-Domain Schemes for Maxwell's Equations". IEEE Transactions on Antennas and Propagation 56, n.º 2 (2008): 493–500. http://dx.doi.org/10.1109/tap.2007.915444.
Texto completo da fonteNevels, Robert, e Jaehoon Jeong. "Time Domain Coupled Field Dyadic Green Function Solution for Maxwell's Equations". IEEE Transactions on Antennas and Propagation 56, n.º 8 (agosto de 2008): 2761–64. http://dx.doi.org/10.1109/tap.2008.927574.
Texto completo da fonteWang, Jianying, Peng Liu e Yunliang Long. "A Compact Symplectic High-Order Scheme for Time-Domain Maxwell's Equations". IEEE Antennas and Wireless Propagation Letters 9 (2010): 371–74. http://dx.doi.org/10.1109/lawp.2010.2049470.
Texto completo da fonteKim, Joonshik, e Fernando L. Teixeira. "Parallel and Explicit Finite-Element Time-Domain Method for Maxwell's Equations". IEEE Transactions on Antennas and Propagation 59, n.º 6 (junho de 2011): 2350–56. http://dx.doi.org/10.1109/tap.2011.2143682.
Texto completo da fonteOmick, S., e S. Castillo. "Error characterization for the time-domain numerical solution of Maxwell's equations". IEEE Antennas and Propagation Magazine 36, n.º 5 (outubro de 1994): 58–62. http://dx.doi.org/10.1109/74.334927.
Texto completo da fonteBi, Z., K. Wu, C. Wu e J. Litva. "A new finite-difference time-domain algorithm for solving Maxwell's equations". IEEE Microwave and Guided Wave Letters 1, n.º 12 (dezembro de 1991): 382–84. http://dx.doi.org/10.1109/75.103858.
Texto completo da fonteLee, J. F. "WETD - a finite element time-domain approach for solving Maxwell's equations". IEEE Microwave and Guided Wave Letters 4, n.º 1 (1994): 11–13. http://dx.doi.org/10.1109/75.267679.
Texto completo da fonteBao, Gang, Ying Li e Zhengfang Zhou. "Lp estimates of time-harmonic Maxwell's equations in a bounded domain". Journal of Differential Equations 245, n.º 12 (dezembro de 2008): 3674–86. http://dx.doi.org/10.1016/j.jde.2008.03.004.
Texto completo da fonteAngulo, Luis Diaz, Jesus Alvarez, Fernando L. Teixeira, M. Fernandez Pantoja e Salvador G. Garcia. "A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations". IEEE Transactions on Microwave Theory and Techniques 63, n.º 10 (outubro de 2015): 3081–93. http://dx.doi.org/10.1109/tmtt.2015.2472411.
Texto completo da fonteLarson, R. W., T. Rudolph e P. H. Ng. "Special purpose computers for the time domain advance of Maxwell's equations". IEEE Transactions on Magnetics 25, n.º 4 (julho de 1989): 2913–15. http://dx.doi.org/10.1109/20.34322.
Texto completo da fonteDosopoulos, Stylianos, e Jin-Fa Lee. "Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations". IEEE Transactions on Magnetics 46, n.º 8 (agosto de 2010): 3512–15. http://dx.doi.org/10.1109/tmag.2010.2043235.
Texto completo da fonteHuang, Z. X., X. L. Wu, W. Sha e M. S. Chen. "Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations". Microwave and Optical Technology Letters 49, n.º 3 (26 de janeiro de 2007): 545–47. http://dx.doi.org/10.1002/mop.22193.
Texto completo da fonteHuang, Z. X., X. L. Wu, W. E. I. Sha e B. Wu. "Optimized Operator-Splitting Methods in Numerical Integration of Maxwell's Equations". International Journal of Antennas and Propagation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/956431.
Texto completo da fonteBALL, JOHN M., YVES CAPDEBOSCQ e BASANG TSERING-XIAO. "ON UNIQUENESS FOR TIME HARMONIC ANISOTROPIC MAXWELL'S EQUATIONS WITH PIECEWISE REGULAR COEFFICIENTS". Mathematical Models and Methods in Applied Sciences 22, n.º 11 (10 de setembro de 2012): 1250036. http://dx.doi.org/10.1142/s0218202512500364.
Texto completo da fonteKnoke, Tobias, Sebastian Kinnewig, Sven Beuchler, Ayhan Demircan, Uwe Morgner e Thomas Wick. "Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers". Selecciones Matemáticas 10, n.º 01 (31 de maio de 2023): 1–15. http://dx.doi.org/10.17268/sel.mat.2023.01.01.
Texto completo da fonteHelfert, S. F. "The Method of Lines in the time domain". Advances in Radio Science 11 (4 de julho de 2013): 15–21. http://dx.doi.org/10.5194/ars-11-15-2013.
Texto completo da fonteCOSTABEL, MARTIN, MONIQUE DAUGE e CHRISTOPH SCHWAB. "EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS". Mathematical Models and Methods in Applied Sciences 15, n.º 04 (abril de 2005): 575–622. http://dx.doi.org/10.1142/s0218202505000480.
Texto completo da fonteZhang, Pan, Yanyan Hu, Yuchen Jin, Shaogui Deng, Xuqing Wu e Jiefu Chen. "A Maxwell's Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations". IEEE Journal on Multiscale and Multiphysics Computational Techniques 6 (2021): 35–40. http://dx.doi.org/10.1109/jmmct.2021.3057793.
Texto completo da fonteJoon-Ho Lee, Jiefu Chen e Qing Huo Liu. "A 3-D Discontinuous Spectral Element Time-Domain Method for Maxwell's Equations". IEEE Transactions on Antennas and Propagation 57, n.º 9 (setembro de 2009): 2666–74. http://dx.doi.org/10.1109/tap.2009.2027731.
Texto completo da fonteNickisch, L. J., e P. M. Franke. "Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere". IEEE Antennas and Propagation Magazine 34, n.º 5 (outubro de 1992): 33–39. http://dx.doi.org/10.1109/74.163808.
Texto completo da fonteEl Bouajaji, M., B. Thierry, X. Antoine e C. Geuzaine. "A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations". Journal of Computational Physics 294 (agosto de 2015): 38–57. http://dx.doi.org/10.1016/j.jcp.2015.03.041.
Texto completo da fonteWinges, Johan, e Thomas Rylander. "Higher-order brick-tetrahedron hybrid method for Maxwell's equations in time domain". Journal of Computational Physics 321 (setembro de 2016): 698–707. http://dx.doi.org/10.1016/j.jcp.2016.05.063.
Texto completo da fonteZhong, Shuangying, e Song Liu. "The Force-Gradient Symplectic Finite-Difference Time-Domain Scheme for Maxwell's Equations". IEEE Transactions on Antennas and Propagation 63, n.º 2 (fevereiro de 2015): 834–38. http://dx.doi.org/10.1109/tap.2014.2381255.
Texto completo da fontePalaniswamy, Sampath, William F. Hall e Vijaya Shankar. "Numerical solution to Maxwell's equations in the time domain on nonuniform grids". Radio Science 31, n.º 4 (julho de 1996): 905–12. http://dx.doi.org/10.1029/96rs00783.
Texto completo da fonteLee, Robert L., e Niel K. Madsen. "A mixed finite element formulation for Maxwell's equations in the time domain". Journal of Computational Physics 85, n.º 2 (dezembro de 1989): 503. http://dx.doi.org/10.1016/0021-9991(89)90168-x.
Texto completo da fonteLee, Robert L., e Niel K. Madsen. "A mixed finite element formulation for Maxwell's equations in the time domain". Journal of Computational Physics 88, n.º 2 (junho de 1990): 284–304. http://dx.doi.org/10.1016/0021-9991(90)90181-y.
Texto completo da fonteNiegemann, Jens, Lasha Tkeshelashvili e Kurt Busch. "Higher-Order Time-Domain Simulations of Maxwell's Equations Using Krylov-Subspace Methods". Journal of Computational and Theoretical Nanoscience 4, n.º 3 (1 de maio de 2007): 627–34. http://dx.doi.org/10.1166/jctn.2007.027.
Texto completo da fonteLovetri, Joe, e George I. Costache. "Efficient implementation issues of finite difference time-domain codes for Maxwell's equations". International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 6, n.º 3 (agosto de 1993): 195–206. http://dx.doi.org/10.1002/jnm.1660060304.
Texto completo da fonteMeagher, Timothy, Bin Jiang e Peng Jiang. "An enhanced finite difference time domain method for two dimensional Maxwell's equations". Numerical Methods for Partial Differential Equations 36, n.º 5 (23 de janeiro de 2020): 1129–44. http://dx.doi.org/10.1002/num.22467.
Texto completo da fonteHuang, Zhi-Xiang, Wei Sha, Xian-Liang Wu e Ming-Sheng Chen. "A novel high-order time-domain scheme for three-dimensional Maxwell's equations". Microwave and Optical Technology Letters 48, n.º 6 (2006): 1123–25. http://dx.doi.org/10.1002/mop.21563.
Texto completo da fonteBouquet, A., C. Dedeban e S. Piperno. "Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally refined grids with fictitious domains". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 29, n.º 3 (11 de maio de 2010): 578–601. http://dx.doi.org/10.1108/03321641011028206.
Texto completo da fonteDOUGLAS, JIM, JUAN E. SANTOS e DONGWOO SHEEN. "A NONCONFORMING MIXED FINITE ELEMENT METHOD FOR MAXWELL'S EQUATIONS". Mathematical Models and Methods in Applied Sciences 10, n.º 04 (junho de 2000): 593–613. http://dx.doi.org/10.1142/s021820250000032x.
Texto completo da fontePark, Jong Hyuk, e John C. Strikwerda. "The Domain Decomposition Method for Maxwell's Equations in Time Domain Simulations with Dispersive Metallic Media". SIAM Journal on Scientific Computing 32, n.º 2 (janeiro de 2010): 684–702. http://dx.doi.org/10.1137/070705374.
Texto completo da fonteYee, K. S., e J. S. Chen. "The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations". IEEE Transactions on Antennas and Propagation 45, n.º 3 (março de 1997): 354–63. http://dx.doi.org/10.1109/8.558651.
Texto completo da fonteSheu, Tony W. H., S. Z. Wang, J. H. Li e Matthew R. Smith. "Simulation of Maxwell's Equations on GPU Using a High-Order Error-Minimized Scheme". Communications in Computational Physics 21, n.º 4 (8 de março de 2017): 1039–64. http://dx.doi.org/10.4208/cicp.oa-2016-0079.
Texto completo da fonteYu, Mengjun, e Kun Li. "A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations". Networks and Heterogeneous Media 19, n.º 3 (2024): 1309–35. http://dx.doi.org/10.3934/nhm.2024056.
Texto completo da fonteJin, Jian-Ming, Mohammad Zunoubi, Kalyan C. Donepudi e Weng C. Chew. "Frequency-domain and time-domain finite-element solution of Maxwell's equations using spectral Lanczos decomposition method". Computer Methods in Applied Mechanics and Engineering 169, n.º 3-4 (fevereiro de 1999): 279–96. http://dx.doi.org/10.1016/s0045-7825(98)00158-3.
Texto completo da fonteZunoubi, M., Jian-Ming Jin e Weng Cho Chew. "Spectral Lanczos decomposition method for time domain and frequency domain finite-element solution of Maxwell's equations". Electronics Letters 34, n.º 4 (1998): 346. http://dx.doi.org/10.1049/el:19980333.
Texto completo da fonteTiwari, Apurva, e Avijit Chatterjee. "Divergence Error Based p-adaptive Discontinuous Galerkin Solution of Time-domain Maxwell's Equations". Progress In Electromagnetics Research B 96 (2022): 153–72. http://dx.doi.org/10.2528/pierb22080403.
Texto completo da fonte