Artigos de revistas sobre o tema "MAX phase synthesis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "MAX phase synthesis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Arlashkin, I. E., S. N. Perevislov e V. L. Stolyarova. "Synthesis and study of dense materials in the Zr–Al–C system". Журнал общей химии 93, n.º 4 (15 de abril de 2023): 622–27. http://dx.doi.org/10.31857/s0044460x23040145.
Texto completo da fonteGurin, Mikhail S., Dmitry S. Shtarev, Alexander V. Syuy, Gleb I. Tselikov, Oleg O. Shichalin e Victor V. Krishtop. "FEATURES OF THE SYNTHESIS OF MAX-PHASES TixAlC1-x BY SPARK PLASMA SINTERING". Transactions of the Kоla Science Centre of RAS. Series: Engineering Sciences 3, n.º 3/2023 (14 de abril de 2023): 97–101. http://dx.doi.org/10.37614/2949-1215.2023.14.3.017.
Texto completo da fonteKovalev, D. Yu, M. A. Luginina e A. E. Sytschev. "Reaction synthesis of Ti2AlN MAX-phase". Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings), n.º 2 (1 de janeiro de 2016): 41–46. http://dx.doi.org/10.17073/1997-308x-2016-2-41-46.
Texto completo da fonteKovalev, I. D., P. A. Miloserdov, V. A. Gorshkov e D. Yu Kovalev. "Nb2AlC MAX phase synthesis by SHS metallurgy". Izvestiya Vuzov. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya (Universitiesʹ Proceedings. Powder Metallurgy аnd Functional Coatings), n.º 2 (19 de junho de 2019): 42–48. http://dx.doi.org/10.17073/1997-308x-2019-2-42-48.
Texto completo da fonteKovalev, D. Yu, M. A. Luginina e A. E. Sytschev. "Reaction synthesis of the Ti2AlN MAX-phase". Russian Journal of Non-Ferrous Metals 58, n.º 3 (maio de 2017): 303–7. http://dx.doi.org/10.3103/s1067821217030087.
Texto completo da fonteEl Saeed, M. A., F. A. Deorsola e R. M. Rashad. "Optimization of the Ti3SiC2 MAX phase synthesis". International Journal of Refractory Metals and Hard Materials 35 (novembro de 2012): 127–31. http://dx.doi.org/10.1016/j.ijrmhm.2012.05.001.
Texto completo da fonteAmosov, Aleksandr P., Evgeniy I. Latukhin, P. A. Petrov, E. A. Amosov, Vladislav A. Novikov e A. Yu Illarionov. "Self-Propagating High-Temperature Synthesis of Boron-Containing MAX-Phase". Key Engineering Materials 746 (julho de 2017): 207–13. http://dx.doi.org/10.4028/www.scientific.net/kem.746.207.
Texto completo da fonteKovalev, I. D., P. A. Miloserdov, V. A. Gorshkov e D. Yu Kovalev. "Synthesis of Nb2AlC MAX Phase by SHS Metallurgy". Russian Journal of Non-Ferrous Metals 61, n.º 1 (janeiro de 2020): 126–31. http://dx.doi.org/10.3103/s1067821220010083.
Texto completo da fonteFattahi, Mehdi, e Majid Zarezadeh Mehrizi. "Formation mechanism for synthesis of Ti3SnC2 MAX phase". Materials Today Communications 25 (dezembro de 2020): 101623. http://dx.doi.org/10.1016/j.mtcomm.2020.101623.
Texto completo da fonteMane, Rahul B., Ampolu Haribabu e Bharat B. Panigrahi. "Synthesis and sintering of Ti3GeC2 MAX phase powders". Ceramics International 44, n.º 1 (janeiro de 2018): 890–93. http://dx.doi.org/10.1016/j.ceramint.2017.10.017.
Texto completo da fonteIVANENKO, K. O., e A. M. FAINLEIB. "МАХ PHASE (MXENE) IN POLYMER MATERIALS". Polymer journal 44, n.º 3 (16 de setembro de 2022): 165–81. http://dx.doi.org/10.15407/polymerj.44.03.165.
Texto completo da fonteSalvo, Christopher, Ernesto Chicardi, Rosalía Poyato, Cristina García-Garrido, José Antonio Jiménez, Cristina López-Pernía, Pablo Tobosque e Ramalinga Viswanathan Mangalaraja. "Synthesis and Characterization of a Nearly Single Bulk Ti2AlN MAX Phase Obtained from Ti/AlN Powder Mixture through Spark Plasma Sintering". Materials 14, n.º 9 (26 de abril de 2021): 2217. http://dx.doi.org/10.3390/ma14092217.
Texto completo da fonteDavydov, D. M., E. R. Umerov, E. I. Latukhin e A. P. Amosov. "THE INFLUENCE OF ELEMENTAL POWDER RAW MATERIAL ON THE FORMATION OF THE POROUS FRAME OF TI3ALC2 MAX-PHASE WHEN OBTAINING BY THE SHS METHOD". Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta, n.º 3 (2021): 37–47. http://dx.doi.org/10.18323/2073-5073-2021-3-37-47.
Texto completo da fonteDavydov, D. M., E. R. Umerov, E. I. Latukhin e A. P. Amosov. "THE INFLUENCE OF ELEMENTAL POWDER RAW MATERIAL ON THE FORMATION OF THE POROUS FRAME OF TI3ALC2 MAX-PHASE WHEN OBTAINING BY THE SHS METHOD". Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta, n.º 3 (2021): 37–47. http://dx.doi.org/10.18323/2073-5073-2021-3-37-47.
Texto completo da fonteKirian, I. M., V. Z. Voynash, A. M. Lakhnik, A. V. Marunyak, Yе V. Kochelab e A. D. Rud. "Synthesis of Ti$_3$AlC$_2$ MAX-Phase with Different Content of B$_2$O$_3$ Additives". METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 41, n.º 10 (7 de dezembro de 2019): 1273–81. http://dx.doi.org/10.15407/mfint.41.10.1273.
Texto completo da fonteKirian, I. M., A. M. Lakhnik, O. Yu Khyzhun, I. V. Zagorulko, A. S. Nikolenko e O. D. Rud’. "Single-Step Pressureless Synthesis of the High-Purity Ti$_{3}$AlC$_{2}$ MAX-Phase by Fast Heating". METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 45, n.º 10 (28 de fevereiro de 2024): 1165–77. http://dx.doi.org/10.15407/mfint.45.10.1165.
Texto completo da fonteAkhtar, Sophia, Shrawan Roy, Trang Thu Tran, Jaspal Singh, Anir S. Sharbirin e Jeongyong Kim. "Low Temperature Step Annealing Synthesis of the Ti2AlN MAX Phase to Fabricate MXene Quantum Dots". Applied Sciences 12, n.º 9 (20 de abril de 2022): 4154. http://dx.doi.org/10.3390/app12094154.
Texto completo da fonteLinde, A. V., A. A. Kondakov, I. A. Studenikin, N. A. Kondakova e V. V. Grachev. "MAX phase Ti2AlN synthesis by reactive sintering in vacuum". Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya, n.º 4 (8 de dezembro de 2022): 25–33. http://dx.doi.org/10.17073/1997-308x-2022-4-25-33.
Texto completo da fonteGandara, Meriene, Marta Oliveira Martins, Biljana Šljukić e Emerson Sarmento Gonçalves. "Synthesis of Nb-MXenes for Electrocatalysis Applications". ECS Meeting Abstracts MA2023-02, n.º 54 (22 de dezembro de 2023): 2608. http://dx.doi.org/10.1149/ma2023-02542608mtgabs.
Texto completo da fonteWang, Xudong, Ke Chen, Erxiao Wu, Yiming Zhang, Haoming Ding, Nianxiang Qiu, Yujie Song, Shiyu Du, Zhifang Chai e Qing Huang. "Synthesis and thermal expansion of chalcogenide MAX phase Hf2SeC". Journal of the European Ceramic Society 42, n.º 5 (maio de 2022): 2084–88. http://dx.doi.org/10.1016/j.jeurceramsoc.2021.12.062.
Texto completo da fonteKondakov, A. A., I. A. Studenikin, A. V. Linde, N. A. Kondakova e V. V. Grachev. "Synthesis of Ti2AlN MAX-phase by sintering in vacuum". IOP Conference Series: Materials Science and Engineering 558 (24 de junho de 2019): 012017. http://dx.doi.org/10.1088/1757-899x/558/1/012017.
Texto completo da fonteLapauw, T., K. Lambrinou, T. Cabioc’h, J. Halim, J. Lu, A. Pesach, O. Rivin et al. "Synthesis of the new MAX phase Zr 2 AlC". Journal of the European Ceramic Society 36, n.º 8 (julho de 2016): 1847–53. http://dx.doi.org/10.1016/j.jeurceramsoc.2016.02.044.
Texto completo da fonteHamm, Christin M., Timo Schäfer, Hongbin Zhang e Christina S. Birkel. "Non-conventional Synthesis of the 413 MAX Phase V4AlC3". Zeitschrift für anorganische und allgemeine Chemie 642, n.º 23 (29 de novembro de 2016): 1397–401. http://dx.doi.org/10.1002/zaac.201600370.
Texto completo da fonteGorshkov, V. A., N. Yu Khomenko e D. Yu Kovalev. "Synthesis of cast materials based on MAX phases in Cr–Ti–Al–C system". Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya, n.º 2 (23 de setembro de 2021): 13–21. http://dx.doi.org/10.17073/1997-308x-2021-2-13-21.
Texto completo da fonteLuo, Jia, Fengjuan Zhang, Bo Wen, Qiqiang Zhang, Longsheng Chu, Yanchun Zhou, Qingguo Feng e Chunfeng Hu. "Theoretical Prediction and Experimental Synthesis of Zr3AC2 (A = Cd, Sb) Phases". Materials 17, n.º 7 (28 de março de 2024): 1556. http://dx.doi.org/10.3390/ma17071556.
Texto completo da fonteSiebert, Jan Paul, Lothar Bischoff, Maren Lepple, Alexander Zintler, Leopoldo Molina-Luna, Ulf Wiedwald e Christina S. Birkel. "Sol–gel based synthesis and enhanced processability of MAX phase Cr2GaC". Journal of Materials Chemistry C 7, n.º 20 (2019): 6034–40. http://dx.doi.org/10.1039/c9tc01416k.
Texto completo da fonteRasid, Zarrul Azwan Mohd, Mohd Firdaus Omar, Muhammad Firdaus Mohd Nazeri, Syahrul Affandi Saidi, Andrei Victor Sandu e Mustafa Al Bakri Abdullah Mohd. "A Study of two Dimensional Metal Carbide MXene Ti3C2 Synthesis, characterization conductivity and radiation properties". Materiale Plastice 56, n.º 3 (30 de setembro de 2019): 635–40. http://dx.doi.org/10.37358/mp.19.3.5244.
Texto completo da fonteAmosov, A. P., E. I. Latukhin, E. R. Umerov e D. M. Davydov. "Investigation of possibility of fabrication of long-length samples of Ti3AlC2–Al MAX-cermet by the SHS method with spontaneous infiltration by aluminum melt". Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya, n.º 3 (6 de setembro de 2022): 24–36. http://dx.doi.org/10.17073/1997-308x-2022-3-24-36.
Texto completo da fonteShalini Reghunath, B., Deepak Davis e K. R. Sunaja Devi. "Synthesis and characterization of Cr2AlC MAX phase for photocatalytic applications". Chemosphere 283 (novembro de 2021): 131281. http://dx.doi.org/10.1016/j.chemosphere.2021.131281.
Texto completo da fonteIstomina, E. I., P. V. Istomin, A. V. Nadutkin, V. E. Grass e A. S. Bogdanova. "Optimization of the Carbosilicothermic Synthesis of the Ti4SiC3 MAX Phase". Inorganic Materials 54, n.º 6 (junho de 2018): 528–36. http://dx.doi.org/10.1134/s0020168518060055.
Texto completo da fonteGriseri, Matteo, Bensu Tunca, Thomas Lapauw, Shuigen Huang, Lucia Popescu, Michel W. Barsoum, Konstantina Lambrinou e Jozef Vleugels. "Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase". Journal of the European Ceramic Society 39, n.º 10 (agosto de 2019): 2973–81. http://dx.doi.org/10.1016/j.jeurceramsoc.2019.04.021.
Texto completo da fonteLapauw, T., J. Halim, J. Lu, T. Cabioc'h, L. Hultman, M. W. Barsoum, K. Lambrinou e J. Vleugels. "Synthesis of the novel Zr 3 AlC 2 MAX phase". Journal of the European Ceramic Society 36, n.º 3 (fevereiro de 2016): 943–47. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.10.011.
Texto completo da fonteCuskelly, Dylan T., e Erich H. Kisi. "Single-Step Carbothermal Synthesis of High-Purity MAX Phase Powders". Journal of the American Ceramic Society 99, n.º 4 (2 de março de 2016): 1137–40. http://dx.doi.org/10.1111/jace.14170.
Texto completo da fonteYan, Ming, Chao Li, Yunqi Zou e Mengliu Yang. "Synthesis and Characterization of Magnetic MAX Phase (Cr2−xMnx)GaC". Journal of Wuhan University of Technology-Mater. Sci. Ed. 35, n.º 2 (abril de 2020): 363–67. http://dx.doi.org/10.1007/s11595-020-2265-x.
Texto completo da fonteLoginova, Marina, Alexey Sobachkin, Alexander Sitnikov, Vladimir Yakovlev, Valeriy Filimonov, Andrey Myasnikov, Marat Sharafutdinov e Boris Tolochko. "In situ synchrotron research of phase formation in mechanically activated 3Ti + Al powder composition during high-temperature synthesis under the condition of heating with high-frequency electromagnetic fields". Journal of Synchrotron Radiation 26, n.º 2 (25 de janeiro de 2019): 422–29. http://dx.doi.org/10.1107/s1600577518017691.
Texto completo da fonteGarkas, W., Christoph Leyens e A. Flores-Renteria. "Synthesis and Characterization of Ti2AlC and Ti2AlN MAX Phase Coatings Manufactured in an Industrial-Size Coater". Advanced Materials Research 89-91 (janeiro de 2010): 208–13. http://dx.doi.org/10.4028/www.scientific.net/amr.89-91.208.
Texto completo da fonteSiebert, Jan P., Shayna Mallett, Mikkel Juelsholt, Hanna Pazniak, Ulf Wiedwald, Katharine Page e Christina S. Birkel. "Structure determination and magnetic properties of the Mn-doped MAX phase Cr2GaC". Materials Chemistry Frontiers 5, n.º 16 (2021): 6082–91. http://dx.doi.org/10.1039/d1qm00454a.
Texto completo da fonteSiebert, Jan P., Mikkel Juelsholt, Damian Günzing, Heiko Wende, Katharina Ollefs e Christina S. Birkel. "Towards a mechanistic understanding of the sol–gel syntheses of ternary carbides". Inorganic Chemistry Frontiers 9, n.º 7 (2022): 1565–74. http://dx.doi.org/10.1039/d2qi00053a.
Texto completo da fonteBelyaev, I., P. Istomin, E. Istomina, A. Nadutkin e V. Grass. "Leucoxene concentrate as an effective source for synthesizing MAX phase high-temperature ceramic composites". Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences, n.º 2 (18 de julho de 2023): 97–105. http://dx.doi.org/10.19110/1994-5655-2023-2-97-105.
Texto completo da fonteAkhlaghi, Maryam, Esmaeil Salahi, Seyed Ali Tayebifard e Gert Schmidt. "Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part III: microstructure". Synthesis and Sintering 2, n.º 1 (20 de março de 2022): 20–25. http://dx.doi.org/10.53063/synsint.2022.2182.
Texto completo da fonteChlubny, L., J. Lis, K. Chabior, P. Chachlowska e C. Kapusta. "Processing And Properties Of MAX Phases – Based Materials Using SHS Technique". Archives of Metallurgy and Materials 60, n.º 2 (1 de junho de 2015): 859–63. http://dx.doi.org/10.1515/amm-2015-0219.
Texto completo da fonteGorshkov, V. A., A. V. Karpov, D. Yu Kovalev e A. E. Sychev. "Synthesis, Structure and Properties of Material Based on V2AlC MAX Phase". Physics of Metals and Metallography 121, n.º 8 (agosto de 2020): 765–71. http://dx.doi.org/10.1134/s0031918x20080037.
Texto completo da fonteKvashina, T. S., N. F. Uvarov, M. A. Korchagin, Yu L. Krutskiy e A. V. Ukhina. "Synthesis of MXene Ti3C2 by selective etching of MAX-phase Ti3AlC2". Materials Today: Proceedings 31 (2020): 592–94. http://dx.doi.org/10.1016/j.matpr.2020.07.107.
Texto completo da fonteMiloserdov, Pavel A., Vladimir A. Gorshkov, Ivan D. Kovalev e Dmitrii Yu Kovalev. "High-temperature synthesis of cast materials based on Nb2AlC MAX phase". Ceramics International 45, n.º 2 (fevereiro de 2019): 2689–91. http://dx.doi.org/10.1016/j.ceramint.2018.10.198.
Texto completo da fonteKang, Young Jae, Tobias Fey e Peter Greil. "Synthesis of Ti2SnC MAX Phase by Mechanical Activation and Melt Infiltration". Advanced Engineering Materials 14, n.º 1-2 (21 de novembro de 2011): 85–91. http://dx.doi.org/10.1002/adem.201100186.
Texto completo da fonteIon, Alberto, Pierre Sallot, Victor Badea, Patrice Duport, Camelia Popescu e Alain Denoirjean. "The Dual Character of MAX Phase Nano-Layered Structure Highlighted by Supersonic Particles Deposition". Coatings 11, n.º 9 (29 de agosto de 2021): 1038. http://dx.doi.org/10.3390/coatings11091038.
Texto completo da fonteMartínez Sánchez, Hugo, George Hadjipanayis, Germán Antonio Pérez Alcázar, Ligia Edith Zamora Alfonso e Juan Sebastián Trujillo Hernández. "Mechanochemical Synthesis and Nitrogenation of the Nd1.1Fe10CoTi Alloy for Permanent Magnet". Molecules 26, n.º 13 (24 de junho de 2021): 3854. http://dx.doi.org/10.3390/molecules26133854.
Texto completo da fonteLuo, Wei, Yi Liu, Chuangye Wang, Dan Zhao, Xiaoyan Yuan, Lei Wang, Jianfeng Zhu, Shouwu Guo e Xingang Kong. "Molten salt assisted synthesis and electromagnetic wave absorption properties of (V1−x−yTixCry)2AlC solid solutions". Journal of Materials Chemistry C 9, n.º 24 (2021): 7697–705. http://dx.doi.org/10.1039/d1tc01338f.
Texto completo da fonteAkhlaghi, Maryam, Esmaeil Salahi, Seyed Ali Tayebifard e Gert Schmidt. "Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part II: Phase evolution". Synthesis and Sintering 1, n.º 4 (26 de dezembro de 2021): 211–16. http://dx.doi.org/10.53063/synsint.2021.1453.
Texto completo da fonteSun, Z. M., Tsutomu Sonoda, Hitoshi Hashimoto e Akihiro Matsumoto. "Synthesis of MAX Phase (Cr,V)2AlC Thin Films". Materials Science Forum 750 (março de 2013): 1–6. http://dx.doi.org/10.4028/www.scientific.net/msf.750.1.
Texto completo da fonte