Literatura científica selecionada sobre o tema "Mathematical Sciences"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mathematical Sciences".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Mathematical Sciences"

1

Thomas, Jan, Michelle Muchatuta e Leigh Wood. "Mathematical sciences in Australia". International Journal of Mathematical Education in Science and Technology 40, n.º 1 (15 de janeiro de 2009): 17–26. http://dx.doi.org/10.1080/00207390802597654.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ziegel, Eric. "Handbook of Mathematical Sciences". Technometrics 31, n.º 2 (maio de 1989): 275. http://dx.doi.org/10.1080/00401706.1989.10488546.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

O'Leary, D. P., e S. T. Weidman. "The interface between computer science and the mathematical sciences". Computing in Science and Engineering 3, n.º 3 (maio de 2001): 60–65. http://dx.doi.org/10.1109/mcise.2001.919268.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Katz, Emily. "The Mixed Mathematical Intermediates". PLATO JOURNAL 18 (22 de dezembro de 2018): 83–96. http://dx.doi.org/10.14195/2183-4105_18_7.

Texto completo da fonte
Resumo:
In Metaphysics B.2 and M.2, Aristotle gives a series of arguments against Platonic mathematical objects. On the view he targets, mathematicals are substances somehow intermediate between Platonic forms and sensible substances. I consider two closely related passages in B2 and M.2 in which he argues that Platonists will need intermediates not only for geometry and arithmetic, but also for the so-called mixed mathematical sciences (mechanics, harmonics, optics, and astronomy), and ultimately for all sciences of sensibles. While this has been dismissed as mere polemics, I show that the argument is given in earnest, as Aristotle is committed to its key premises. Further, the argument reveals that Annas’ uniqueness problem (1975, 151) is not the only reason a Platonic ontology needs intermediates (according to Aristotle). Finally, since Aristotle’s objection to intermediates for the mixed mathematical sciences is one he takes seriously, so that it is unlikely that his own account of mathematical objects would fall prey to it, the argument casts doubt on a common interpretation of his philosophy of mathematics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kim, K. H., F. W. Roush e M. D. Intriligator. "Overview of Mathematical Social Sciences". American Mathematical Monthly 99, n.º 9 (novembro de 1992): 838. http://dx.doi.org/10.2307/2324119.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Dr. Sumit Agarwal, Dr Sumit Agarwal. "Mathematical Modelling In Transportation Sciences". IOSR Journal of Mathematics 5, n.º 6 (2013): 39–43. http://dx.doi.org/10.9790/5728-0563943.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kang, Zhou-Zheng, e Tie-Cheng Xia. "American Institute of Mathematical Sciences". Journal of Applied Analysis & Computation 10, n.º 2 (2020): 729–39. http://dx.doi.org/10.11948/20190128.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Pulleyblank, W. R. "Mathematical sciences in the nineties". IBM Journal of Research and Development 47, n.º 1 (janeiro de 2003): 89–96. http://dx.doi.org/10.1147/rd.471.0089.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Lewis, Hazel. "Mathematical Sciences Strand Outreach Work". MSOR Connections 11, n.º 3 (setembro de 2011): 52–56. http://dx.doi.org/10.11120/msor.2011.11030052.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kim, K. H., F. W. Roush e M. D. Intriligator. "Overview of Mathematical Social Sciences". American Mathematical Monthly 99, n.º 9 (novembro de 1992): 838–44. http://dx.doi.org/10.1080/00029890.1992.11995938.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Mathematical Sciences"

1

Kaya, Ahmet. "Modern mathematical methods for actuarial sciences". Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/39613.

Texto completo da fonte
Resumo:
In the ruin theory, premium income and outgoing claims play an important role. We introduce several ruin type mathematical models and apply various mathematical methods to find optimal premium price for the insurance companies. Quantum theory is one of the significant novel approaches to compute the finite time non-ruin probability. More exactly, we apply the discrete space Quantum mechanics formalism (see main thesis for formalism) and continuous space Quantum mechanics formalism (see main thesis for formalism) with the appropriately chosen Hamiltonians. Several particular examples are treated via the traditional basis and quantum mechanics formalism with the different eigenvector basis. The numerical results are also obtained using the path calculation method and compared with the stochastic modeling results. In addition, we also construct various models with interest rate. For these models, optimal premium prices are stochastically calculated for independent and dependent claims with different dependence levels by using the Frank copula method.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wilensky, Uriel Joseph. "Connected mathematics : builiding concrete relationships with mathematical knowledge". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/29066.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Holdaway, Emma Lynn. "Mathematical Identities of Students with Mathematics Learning Dis/abilities". BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8536.

Texto completo da fonte
Resumo:
The majority of research on the mathematics teaching and learning of students with mathematics learning dis/abilities is not performed in the field of mathematics education, but in the field of special education. Due to this theoretical divide, students with mathematics learning dis/abilities are far more likely to be in classes that emphasize memorization, direct instruction, and the explicit teaching of rules and procedures. Additionally, students with mathematics learning dis/abilities are often seen as "unable" to succeed in school mathematics and are characterized by their academic difficulties and deficits. The negative assumptions, beliefs, and expectations resulting from ableistic practices in the education system color the interactions educators, parents, and other students have with students with mathematics learning dis/abilities. These interactions in turn influence how students with mathematics learning dis/abilities view and position themselves as learners and doers of mathematics. My study builds on the theoretical framework of positioning theory (Harré, 2012) in order to better understand the mathematical identities of students with mathematics learning dis/abilities. The results of my study show how these students use their prepositions and enduring positions to inform the in-the-moment positions they take on in the mathematics classroom.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Brown, Adam. "Infeasibility of solving finite mathematical problems". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86989.

Texto completo da fonte
Resumo:
We prove that the decision problem for finite mathematical state- ments, though recursive, is infeasible in seemingly any realistic model of computation. In particular, we construct of a set of finite mathematical statements which can only be feasibly solved by programs long enough to explicitly encode a decision for each statement. This result was published in Hungarian, in 1973, by Michael Makkai and appears here for the first time in English. In this paper we: 1) elucidate Makkai's proof as an adaptation of Gödel's first incompleteness proof, 2) strengthen his 1973 result and 3) reflect on this result from the perspectives of computational complexity and algorithmic information theory (Kolmogorov complexity).
Nous avons démontré que le problème quand à prendre des décisions concernant des énoncés mathématiques finis, bien que récursif, est infaisable accordé à n'importe quel modèle de calcul. Plus précisément, nous avons établi un ensemble de problèmes mathématiques ne pouvant être résolus que par des programmes assez long qui suggéreraient la décision finale implicitement, au fil des calculs. Ce fait a d'abord été publié en 1973 par un Hongrois du nom de Michael Makkai, et il sera expliqué en anglais pour la toute première fois ici. Dans ce travail, nous 1) éluciderons la démonstration faite par Makkai basé sur l'adaptation de la première démonstration du théorème incomplétude de Gödel, 2) appuierons les résultats trouvés en 1973 par Makkai et 3) tirerons des conclusions sur ses résultats en utilisant la théorie de la complexité et la théorie algorithmique de l'information, aussi appelée complexité de Kolmogorov.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Jakobsson-Åhl, Teresia. "Encouraging Participation in Mathematical Practices : Messages in the Boost for Mathematics". Thesis, Luleå tekniska universitet, Institutionen för konst, kommunikation och lärande, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-67660.

Texto completo da fonte
Resumo:
In this thesis, focused attention is given to the idea of task solvers as active participants in mathematical practices. The theoretical assumptions of the study, reported in this thesis, are inspired by socio-political concerns. The aim of the study is to investigate the underlying view of participation in mathematical practices, as understood in a nationwide teacher professional development programme, the Boost for Mathematics, in Sweden. To be more precise, the study is arranged to problematise ways of encouraging students as active participants. This aim is approached by means of the following research questions: (1) What messages do mathematical tasks in the Boost for Mathematics send about people as participants in mathematical practices? and (2) What is the role of multiple representations in these messages? An empirical study is reported. The data of the study, i.e., three collections of problems, are drawn from the Boost for Mathematics. Data processing is conducted by using a modified version of a pre-existing data processing framework, focusing on mathematical practices as socio-political practices. The empirical study uncovers an implicit view of task solvers in mathematical practices and especially a detachment between students, as potential task solvers, and the social contexts where mathematical ideas and concepts are embedded. This implicit view is challenged from the assumption that it is motivating for a student to conceive him/herself as someone who is ‘qualified’ to take part in mathematical practices.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Courvoisier, Pierre. "Mathematical modelling of composting processes using finite element method". Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103735.

Texto completo da fonte
Resumo:
Composting is one element of waste management. It allows waste to be transformed into a valuable product. The processes involved and the final product, however, may vary in terms of quality, efficiency or security. Models have been established to represent some features of the composting process, but never all of them together. We hypothesized that all the key features from the literature could be gathered in one model. This model should be qualitatively faithful, reliable, and easily adapted to any situation. We used COMSOL TM, software that uses proven algorithms and the finite element method to solve partial differential equations in high spatial resolution in up to three dimensions. The behavior of this model was studied through parameter variations and sensitivity analysis. Patterns in temperature, biomass, substrate, oxygen and water concentration curves were consistent with the typical curves found in literature about composting. Initial water concentration and airflow were found to have an important impact on the composting process, while inlet air temperature did not. The resolution of the mathematical problem in a two-dimensional, longitudinal cross-section of the rectangular vessel allowed the observation of spatial patterns. This model can be used as a basis for further studies as new features are easy to implement. It can likewise be adapted to any apparatus, which makes it useful for comparative analysis. The suggested model, however, has yet to be validated against a physical system and this should be the next step.
Le compostage est un composant de la gestion des déchets et permet de les transformer en un produit à valeur ajouté. Les procédés en jeu, ainsi que les produits finis peuvent cependant varier au niveau de la qualité, de l'efficacité, et de la sécurité. Des modèles ont été mis au point pour prendre en compte certaines caractéritiques du compostage, mais jamais de façon exhaustive. Notre hypothèse était que toutes les caractéristiques clés décrites dans la littérature peuvent être réunies en un seul modèle. Ce modèle doit être qualitativement fidèle, fiable, et facilement adaptable à toutes les situations. Nous avons utilisé COMSOL TM, un logiciel qui utilise des algorithmes établis et se base sur la méthode des éléments finis pour résoudre les systèmes d'équations différentielles partielles avec une bonne résolution spatiale en deux ou trois dimensions. La réponse de ce modèle face à des variations paramètriques et à une analyse de sensitivité a été étudiée. Les comportements de la température, de la biomasse, du substrat, de l'oxygène, et de la quantité d'eau ont été cohérents avec ceux trouvés dans la littérature sur le compostage. La concentration initiale en eau, ainsi que l'aération, ont été prouvés avoir un impact important sur le compostage, contrairement à la température de l'air entrant. La résolution du problème mathématique dans une coupe bidimensionnelle longitudinale du container rectangulaire permet l'observation de comportements spatiaux. Ce modèle pourra être utilisé comme un fondement pour de futures études car l'ajout de nouvelles caractéristiques y est aisé. Le modèle peut aussi être facilement adapté à différentes conditions expérimentales, ce qui en fait un bon outil comparatif. Cependant, le modèle suggéré doit d'abord être validé par des données expérimentales.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Boyaval, Sébastien. "Mathematical modelling and numerical simulation in materials science". Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00499254.

Texto completo da fonte
Resumo:
In a first part, we study numerical schemes using the finite-element method to discretize the Oldroyd-B system of equations, modelling a viscoelastic fluid under no flow boundary condition in a 2- or 3- dimensional bounded domain. The goal is to get schemes which are stable in the sense that they dissipate a free-energy, mimicking that way thermodynamical properties of dissipation similar to those actually identified for smooth solutions of the continuous model. This study adds to numerous previous ones about the instabilities observed in the numerical simulations of viscoelastic fluids (in particular those known as High Weissenberg Number Problems). To our knowledge, this is the first study that rigorously considers the numerical stability in the sense of an energy dissipation for Galerkin discretizations. In a second part, we adapt and use ideas of a numerical method initially developped in the works of Y. Maday, A.T. Patera et al., the reduced-basis method, in order to efficiently simulate some multiscale models. The principle is to numerically approximate each element of a parametrized family of complicate objects in a Hilbert space through the closest linear combination within the best linear subspace spanned by a few elementswell chosen inside the same parametrized family. We apply this principle to numerical problems linked : to the numerical homogenization of second-order elliptic equations, with two-scale oscillating diffusion coefficients, then ; to the propagation of uncertainty (computations of the mean and the variance) in an elliptic problem with stochastic coefficients (a bounded stochastic field in a boundary condition of third type), last ; to the Monte-Carlo computation of the expectations of numerous parametrized random variables, in particular functionals of parametrized Itô stochastic processes close to what is encountered in micro-macro models of polymeric fluids, with a control variate to reduce its variance. In each application, the goal of the reduced-basis approach is to speed up the computations without any loss of precision
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Dyson, Jack. "Mathematical techniques in the physical sciences: a geometric analysis of the convolution integral". Doctoral thesis, Università Politecnica delle Marche, 2010. http://hdl.handle.net/11566/242266.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Reeves, Laurence H. "Mathematical Programming Applications in Agroforestry Planning". DigitalCommons@USU, 1991. https://digitalcommons.usu.edu/etd/6495.

Texto completo da fonte
Resumo:
Agroforestry as a sustainable production system has been recognized as a land use system with the potential to slow encroachment of agriculture onto forested lands in developing countries. However, the acceptance of nontraditional agroforestry systems has been hampered in some areas due to the risk-averse nature of rural agriculturalists. By explicitly recognizing risk in agroforestry planning, a wider acceptance of agroforestry is possible. This thesis consists of a collection of three papers that explore the potential of modern stock portfolio theory to reduce financial risk in agroforestry planning. The first paper presents a theoretical framework that incorporates modern stock portfolio theory through mathematical programming. This framework allows for the explicit recognition of financial risk by using a knowledge of past net revenue trends and fluctuations for various cropping systems, with the assumption that past trend behavior is indicative of future behavior. The paper demonstrates how financial risk can be reduced by selecting cropping systems with stable and/or negatively correlated net revenues, thereby reducing the variance of future net revenues. Agroforestry systems generally entail growing simultaneously some combination of plant and/or animal species. As a result, interactions between crops usually cause crop yields within systems to deviate from what would be observed under monocultural conditions, thus requiring some means of incorporating these interactions into mathematical models. The second paper presents two approaches to modeling such interactions, depending on the nature of the interaction. The continuous system approach is appropriate under conditions where yield interactions are linear between crops and allows for a continuous range of crop mixtures. The discrete system approach should be used where nonlinear interactions occur. Under this second approach, decision variables are defined as fixed crop mixtures with known yields. In the third paper, the techniques presented above were applied to a case study site in Costa Rica. Using MOTAD programming and a discrete system approach, a set of minimum-risk farm plans were derived for a hypothetical farm. For the region studied, results indicate that reductions in risk require substantial reductions in expected net revenue.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Behzadi, Mahsa. "A Mathematical Model of Phospholipid Biosynthesis". Phd thesis, Palaiseau, Ecole polytechnique, 2011. https://theses.hal.science/docs/00/65/03/99/PDF/BehzadiPhD.pdf.

Texto completo da fonte
Resumo:
A l'heure de l'acquisition de données à haut débit concernant le métabolisme cellulaire et son évolution, il est absolument nécessaire de disposer de modèles permettant d'intégrer ces données en un ensemble cohérent, d'en interpréter les variations métaboliques révélatrice, les étapes clefs où peuvent s'exercer des régulations, voire même d'en révéler des contradictions apparentes mettant en cause les bases sur lesquelles le modèle lui-même est construit. C'est ce type de travail que j'ai entrepris à propos de données expérimentales obtenues dans le laboratoire biologique sur le métabolisme de cellules tumorales en réponse à un traitement anti-cancéreux. Je me suis attachée à la modélisation d'un point particulier de ce métabolisme. Il concerne le métabolisme des glycérophospholipides qui sont de bons marqueurs de la prolifération cellulaire. Les phospholipides constituent l'essentiel des membranes d'une cellule et l'étude de leur synthèse (en particulier chez les cellules de mammifères) est de ce fait un sujet important. Ici, nous avons pris le parti de mettre en place un modèle mathématique par équations différentielles ordinaires, qui est essentiellement basé sur des équations hyperboliques (Michaelis-Menten), mais aussi sur des cinétiques type loi d'action de masse et diffusion. Le modèle, composé de 8 équations différentielles, donc de 8 substrats d'intérêt, comporte naturellement des paramètres inconnus in vivo, et certains dépendents des conditions cellulaires (différentiations de cellules, pathologies,. . . ). Le modèle sépare la structure du réseau métabolique, l' ́écriture de la matrice de stoechiométrie, celles des équations de vitesse et enfin des équations différentielles. Le modèle choisi est le modèle murin (souris/rat), parce qu'il est lui-même un modèle de l'homme. Plusieurs conditions sont successivement considérées pour l'identification des paramètres, afin d'étudier les liens entre la synthèse de phospholipides et le cancer : - le foie sain du rat, - le mélanome B16 et le carcinome de la lign ́ee 3LL chez la souris, respectivement sans traitement, en cours de traitement 'a la Chloroéthyl-nitrosourée et après traitement, - enfin le mélanome B16 chez la souris sous stress de privation de méthionine. En résumé, ce travail fourni une interprétation nouvelle des données expérimentales en montrant le rôle essentiel de la PEMT et la nature superstable de l'état sta- tionnaire de fonctionnement du réseau métabolique des phospholipides lors de la cancérogènèse et du traitement des cancers. Il montre bien l'avantage de l'utilisation d'un modèle mathématique dans l'interprétation de données métaboliques complexes
When measuring high-throughput data of cellular metabolism and its evolution, it is imperative to use appropriate models. These models allow the incorporation of these data into a coherent set. They also allow inter- pretation of the relevant metabolic variations and the key regulatory steps. Finally, they make contradictions apparent that question the basis on which the model itself is constructed. I use the experimental data of the metabolism of tumor cells in response to an anti-cancer treatment obtained in the biological laboratory. I focus on the modeling of a particular point: the metabolism of glyc- erophospholipids, which are good markers of cell proliferation. Phospho- lipids are essential parts of cell membranes and the study of their synthe- sis (especially mammalian cells) is therefore an important issue. In this work, our choice is to use a mathematical model by ordinary differential equations. This model relies essentially on hyperbolic equations (Michaelis- Menten) but also on kinetics, based on the law of mass action or on the diffusion. The model consists of 8 differential equations thus providing 8 substrates of interest. It has naturally some parameters which are unknown in vivo. Moreover some of them depend on the cellular conditions (cellular differentiation, pathologies). The model is a collection of the structure of the metabolic network, the writing of the stoichiometry matrix, generating the rate equations and finally differential equations. The chosen model is the mouse model (mouse / rat), because it is it- self a model of human. To study the relationship between the synthesis of phospholipids and cancer, several conditions are successively considered for the identification of parameters: - The healthy liver of the rat - The B16 melanoma and 3LL carcinoma line in mice, respectively, without treatment, during treatment with chloroethyl-nitrosourea and after treatment - Finally, the B16 melanoma in mice under methionine deprivation stress. In summary, my work provides a new interpretation of experimental data showing the essential role of PEMT enzyme and the superstable nature of 9 phospholipids metabolic network in carcinogenesis and cancer treatment. It shows the advantage of using a mathematical model in the interpretation of complex metabolic data
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Mathematical Sciences"

1

Acu, Bahar, Donatella Danielli, Marta Lewicka, Arati Pati, Saraswathy RV e Miranda Teboh-Ewungkem, eds. Advances in Mathematical Sciences. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42687-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Society, American Mathematical, ed. Mathematical sciences professional directory. Providence, R.I: American Mathematical Society, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

1951-, Dass B. K., ed. Mathematical sciences, who's who. New Delhi: Taru Publications and Academic Forum, 2004.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chaudhary, Sanjay, Sanjeev Kumar e Shyamli Gupta. Mathematical Sciences and Applications. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003451808.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Fowler, A. C. Mathematical models in the applied sciences. Cambridge: Cambridge University Press, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wilf, Herbert S. Mathematics for the physical sciences. Mineola, N.Y: Dover Publications, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Lee, Ti-Chiang. Mathematical methods in physical sciences and engineering. New York: Vantage Press, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Deines, Alyson, Daniela Ferrero, Erica Graham, Mee Seong Im, Carrie Manore e Candice Price, eds. Advances in the Mathematical Sciences. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98684-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kılıçman, Adem, Hari M. Srivastava, M. Mursaleen e Zanariah Abdul Majid, eds. Recent Advances in Mathematical Sciences. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0519-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Toni, Bourama, ed. Mathematical Sciences with Multidisciplinary Applications. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31323-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Mathematical Sciences"

1

Polak, Elijah. "Mathematical Background". In Applied Mathematical Sciences, 646–742. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0663-7_5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Srivastav, Anand. "Consciousness and Mathematical Sciences". In Consciousness Studies in Sciences and Humanities: Eastern and Western Perspectives, 87–100. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-13920-8_8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Vázquez, Luis. "Applied Mathematics (Mathematical Physics, Discrete Mathematics, Operations Research)". In Encyclopedia of Sciences and Religions, 114–19. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_1248.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Serovajsky, Simon. "Mathematical models in social sciences". In Mathematical Modelling, 149–64. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003035602-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Assous, Franck, Patrick Ciarlet e Simon Labrunie. "Abstract Mathematical Framework". In Applied Mathematical Sciences, 147–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70842-3_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Schuss, Zeev. "Mathematical Brownian Motion". In Applied Mathematical Sciences, 1–34. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7687-0_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Sato, Aki-Hiro. "Mathematical Expressions". In Applied Data-Centric Social Sciences, 75–148. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54974-1_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

McGurn, Arthur. "Mathematical Preliminaries". In Springer Series in Optical Sciences, 29–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77072-7_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ledder, Glenn. "Mathematical Modeling". In Mathematics for the Life Sciences, 83–143. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7276-6_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Cogan, N. G. "Mathematical Background". In Mathematical Modeling the Life Sciences, 9–26. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003316930-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Mathematical Sciences"

1

Rashed, Roshdi. "Earth’s Mathematical Sciences". In The Earth and its Sciences in Islamic Manuscript. Al-Furqān Islamic Heritage Foundation, 2011. http://dx.doi.org/10.56656/100137.01.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Grootenboer, Peter. "Mathematics education: Building mathematical identities". In 28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000581.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mohamed, Siti Rosiah, Syafiza Saila Samsudin, Ainun Hafizah Mohd, Nazihah Ismail e Norhuda Mohammed. "An analysis of mathematical errors in business mathematics". In PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence. Author(s), 2018. http://dx.doi.org/10.1063/1.5041632.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

"Preface: 2015 National Symposium of Mathematical Sciences". In ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS: Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23). Author(s), 2016. http://dx.doi.org/10.1063/1.4954513.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kishimoto, Sadaya, Mamoru Murakata, Takafumi Nakanishi, Tetsuya Sakurai e Takashi Kitagawa. "Problem-Solving Support System for Mathematical Sciences". In 2007 IEEE International Workshop on Databases for Next Generation Researchers. IEEE, 2007. http://dx.doi.org/10.1109/swod.2007.353202.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wan Zin, Wan Zawiah, Syahida Che Dzul-Kifli, Fatimah Abdul Razak e Anuar Ishak. "Preface: 3rd International Conference on Mathematical Sciences". In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882457.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bitar, Khalil, Ali Chamseddine e Wafic Sabra. "The Mathematical Sciences after the Year 2000". In International Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789814447348.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ishak, Anuar, Ishak Hashim, Eddie Shahril Ismail e Roslinda Nazar. "Preface: 20th National Symposium on Mathematical Sciences". In PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation. AIP, 2013. http://dx.doi.org/10.1063/1.4801097.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Mathai, A. M. "Basic research in mathematical and space sciences". In Basic space science. AIP, 1992. http://dx.doi.org/10.1063/1.41732.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

"3rd International Symposium on Mathematical and Computational Oncology (ISMCO'21)". In 3rd International Symposium on Mathematical and Computational Oncology (ISMCO'21). Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88971-009-6.

Texto completo da fonte
Resumo:
Despite significant advances in the understanding of the principal mechanisms leading to various cancer types, less progress has been made toward developing patient-specific treatments. Advanced mathematical and computational models could play a significant role in examining the most effective patient-specific therapies. The purpose of ISMCO is to provide a common interdisciplinary forum for mathematicians, scientists, engineers and clinical oncologists throughout the world to present and discuss their latest research findings, ideas, developments and applications in mathematical and computational oncology. In particular, ISMCO aspires to enable the forging of stronger relationships among mathematics and physical sciences, computer science, data science, engineering and oncology with the goal of developing new insights into the pathogenesis and treatment of malignancies.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Mathematical Sciences"

1

Mhaskar, Hrushikesh N. Research Area 3: Mathematical Sciences: 3.4, Discrete Mathematics and Computer Science. Fort Belvoir, VA: Defense Technical Information Center, maio de 2015. http://dx.doi.org/10.21236/ada625542.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Cox, Lawrence H. Board on Mathematical Sciences. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1990. http://dx.doi.org/10.21236/ada220292.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Boisvert, Ronald F. Mathematical and Computational Sciences Division :. Gaithersburg, MD: National Institute of Standards and Technology, 2010. http://dx.doi.org/10.6028/nist.ir.7671.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Gerr, Neil L. Mathematical Sciences Division 1992 Programs. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1992. http://dx.doi.org/10.21236/ada268586.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Sterrett, A. Career Information in the mathematical sciences (CIMS). Office of Scientific and Technical Information (OSTI), maio de 1993. http://dx.doi.org/10.2172/6543775.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Tucker, John. Core Support of the Board on Mathematical Sciences. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1999. http://dx.doi.org/10.21236/ada395584.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Megginson, Robert, e Hugo Rossi. Quantum Computing Program at the Mathematical Sciences Research Institute. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2003. http://dx.doi.org/10.21236/ada417275.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Scott T. Weidman. [National Academies' Board on Mathematical Sciences and their Application] Final technical report. Office of Scientific and Technical Information (OSTI), janeiro de 2005. http://dx.doi.org/10.2172/835791.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Schwalbe, Michelle Kristin. Partial Support of Meetings of the Board on Mathematical Sciences and Their Applications. Office of Scientific and Technical Information (OSTI), novembro de 2019. http://dx.doi.org/10.2172/1574687.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Weidman, Scott. Partial Support of Meetings of the Board on Mathematical Sciences and Their Applications (Final Report). Office of Scientific and Technical Information (OSTI), agosto de 2014. http://dx.doi.org/10.2172/1171691.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia