Literatura científica selecionada sobre o tema "Mathematical optimization"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mathematical optimization".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Mathematical optimization"
Kulcsár, T., e I. Timár. "Mathematical optimization and engineering applications". Mathematical Modeling and Computing 3, n.º 1 (1 de julho de 2016): 59–78. http://dx.doi.org/10.23939/mmc2016.01.059.
Texto completo da fonteBhardwaj, Suyash, Seema Kashyap e Anju Shukla. "A Novel Approach For Optimization In Mathematical Calculations Using Vedic Mathematics Techniques". MATHEMATICAL JOURNAL OF INTERDISCIPLINARY SCIENCES 1, n.º 1 (2 de julho de 2012): 23–34. http://dx.doi.org/10.15415/mjis.2012.11002.
Texto completo da fonteChawla, Dr Meenu. "Mathematical optimization techniques". Pharma Innovation 8, n.º 2 (1 de janeiro de 2019): 888–92. http://dx.doi.org/10.22271/tpi.2019.v8.i2n.25454.
Texto completo da fonteSuhl, Uwe H. "MOPS — Mathematical optimization system". European Journal of Operational Research 72, n.º 2 (janeiro de 1994): 312–22. http://dx.doi.org/10.1016/0377-2217(94)90312-3.
Texto completo da fonteBlaydа, I. A. "OPTIMIZATION OF THE COAL BACTERIAL DESULFURIZATION USING MATHEMATICAL METHODS". Biotechnologia Acta 11, n.º 6 (dezembro de 2018): 55–66. http://dx.doi.org/10.15407/biotech11.06.055.
Texto completo da fonteRequelme Ibáñez, Rosa María, Carlos Abel Reyes Alvarado e Jorge Luis Lozano Cervera. "Mathematical optimization for economic agents". Revista Ciencia y Tecnología 17, n.º 3 (9 de setembro de 2021): 81–89. http://dx.doi.org/10.17268/rev.cyt.2021.03.07.
Texto completo da fonteSezer, Ali Devin, e Gerhard-Wilhelm Weber. "Optimization Methods in Mathematical Finance". Optimization 62, n.º 11 (novembro de 2013): 1399–402. http://dx.doi.org/10.1080/02331934.2013.863528.
Texto completo da fonteGarcía, J. M., C. A. Acosta e M. J. Mesa. "Genetic algorithms for mathematical optimization". Journal of Physics: Conference Series 1448 (janeiro de 2020): 012020. http://dx.doi.org/10.1088/1742-6596/1448/1/012020.
Texto completo da fonteGorissen, Bram L., Jan Unkelbach e Thomas R. Bortfeld. "Mathematical Optimization of Treatment Schedules". International Journal of Radiation Oncology*Biology*Physics 96, n.º 1 (setembro de 2016): 6–8. http://dx.doi.org/10.1016/j.ijrobp.2016.04.012.
Texto completo da fonteFeichtinger, Gustav. "Mathematical Optimization and Economic Analysis". European Journal of Operational Research 221, n.º 1 (agosto de 2012): 273–74. http://dx.doi.org/10.1016/j.ejor.2012.03.018.
Texto completo da fonteTeses / dissertações sobre o assunto "Mathematical optimization"
Keanius, Erik. "Mathematical Optimization in SVMs". Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297492.
Texto completo da fonteZhou, Fangjun. "Nonmonotone methods in optimization and DC optimization of location problems". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/21777.
Texto completo da fonteHolm, Åsa. "Mathematical Optimization of HDR Brachytherapy". Doctoral thesis, Linköpings universitet, Optimeringslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-99795.
Texto completo da fonteNajafiazar, Bahador. "Mathematical Optimization in Reservoir Management". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for petroleumsteknologi og anvendt geofysikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27058.
Texto completo da fonteSaunders, David. "Applications of optimization to mathematical finance". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29265.pdf.
Texto completo da fonteChang, Tyler Hunter. "Mathematical Software for Multiobjective Optimization Problems". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/98915.
Texto completo da fonteDoctor of Philosophy
Science and engineering are full of multiobjective tradeoff problems. For example, a portfolio manager may seek to build a financial portfolio with low risk, high return rates, and minimal transaction fees; an aircraft engineer may seek a design that maximizes lift, minimizes drag force, and minimizes aircraft weight; a chemist may seek a catalyst with low viscosity, low production costs, and high effective yield; or a computational scientist may seek to fit a numerical model that minimizes the fit error while also minimizing a regularization term that leverages domain knowledge. Often, these criteria are conflicting, meaning that improved performance by one criterion must be at the expense of decreased performance in another criterion. The solution to a multiobjective optimization problem allows decision makers to balance the inherent tradeoff between conflicting objectives. A related problem is the multivariate interpolation problem, where the goal is to predict the outcome of an event based on a database of past observations, while exactly matching all observations in that database. Multivariate interpolation problems are equally as prevalent and impactful as multiobjective optimization problems. For example, a pharmaceutical company may seek a prediction for the costs and effects of a proposed drug; an aerospace engineer may seek a prediction for the lift and drag of a new aircraft design; or a search engine may seek a prediction for the classification of an unlabeled image. Delaunay interpolation offers a unique solution to this problem, backed by decades of rigorous theory and analytical error bounds, but does not scale to high-dimensional "big data" problems. In this thesis, novel algorithms and software are proposed for solving both of these extremely difficult problems.
ROSSI, FILIPPO. "Mathematical models for selling process optimization". Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1050078.
Texto completo da fonteRossetti, Gaia. "Mathematical optimization techniques for cognitive radar networks". Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/33419.
Texto completo da fonteTrescher, Saskia. "Estimating Gene Regulatory Activity using Mathematical Optimization". Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21900.
Texto completo da fonteGene regulation is one of the most important cellular processes and closely interlinked pathogenesis. The elucidation of regulatory mechanisms can be approached by many experimental methods, yet integration of the resulting heterogeneous, large, and noisy data sets into comprehensive models requires rigorous computational methods. A prominent class of methods models genome-wide gene expression as sets of (linear) equations over the activity and relationships of transcription factors (TFs), genes and other factors and optimizes parameters to fit the measured expression intensities. Despite their common root in mathematical optimization, they vastly differ in the types of experimental data being integrated, the background knowledge necessary for their application, the granularity of their regulatory model, the concrete paradigm used for solving the optimization problem and the data sets used for evaluation. We review five recent methods of this class and compare them qualitatively and quantitatively in a unified framework. Our results show that the result overlaps are very low, though sometimes statistically significant. This poor overall performance cannot be attributed to the sample size or to the specific regulatory network provided as background knowledge. We suggest that a reason for this deficiency might be the simplistic model of cellular processes in the presented methods, where TF self-regulation and feedback loops were not represented. We propose a new method for estimating transcriptional activity, named Florae, with a particular focus on the consideration of feedback loops and evaluate its results. Using Floræ, we are able to improve the identification of knockout and knockdown TFs in synthetic data sets. Our results and the proposed method extend the knowledge about gene regulatory activity and are a step towards the identification of causes and mechanisms of regulatory (dys)functions, supporting the development of medical biomarkers and therapies.
Haddon, Antoine. "Mathematical Modeling and Optimization for Biogas Production". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS047.
Texto completo da fonteAnaerobic digestion is a biological process in which organic compounds are degraded by different microbial populations into biogas (carbon dioxyde and methane), which can be used as a renewable energy source. This thesis works towards developing control strategies and bioreactor designs that maximize biogas production.The first part focuses on the optimal control problem of maximizing biogas production in a chemostat in several directions. We consider the single reaction model and the dilution rate is the controlled variable.For the finite horizon problem, we study feedback controllers similar to those used in practice and consisting in driving the reactor towards a given substrate level and maintaining it there. Our approach relies on establishing bounds of the unknown value function by considering different rewards for which the optimal solution has an explicit optimal feedback that is time-independent. In particular, this technique provides explicit bounds on the sub-optimality of the studied controllers for a broad class of substrate and biomass dependent growth rate functions. With numerical simulations, we show that the choice of the best feedback depends on the time horizon and initial condition.Next, we consider the problem over an infinite horizon, for averaged and discounted rewards. We show that, when the discount rate goes to 0, the value function of the discounted problem converges and that the limit is equal to the value function for the averaged reward. We identify a set of optimal solutions for the limit and averaged problems as the controls that drive the system towards a state that maximizes the biogas flow rate on an special invariant set.We then return to the problem over a fixed finite horizon and with the Pontryagin Maximum Principle, we show that the optimal control has a bang singular arc structure. We construct a one parameter family of extremal controls that depend on the constant value of the Hamiltonian. Using the Hamilton-Jacobi-Bellman equation, we identify the optimal control as the extremal associated with the value of the Hamiltonian which satisfies a fixed point equation. We then propose a numerical algorithm to compute the optimal control by solving this fixed point equation. We illustrate this method with the two major types of growth functions of Monod and Haldane.In the second part, we investigate the impact of mixing the reacting medium on biogas production. For this we introduce a model of a pilot scale upflow fixed bed bioreactor that offers a representation of spatial features. This model takes advantage of reactor geometry to reduce the spatial dimension of the section containing the fixed bed and in other sections, we consider the 3D steady-state Navier-Stokes equations for the fluid dynamics. To represent the biological activity, we use a 2 step model and for the substrates, advection-diffusion-reaction equations. We only consider the biomasses that are attached in the fixed bed section and we model their growth with a density dependent function. We show that this model can reproduce the spatial gradient of experimental data and helps to better understand the internal dynamics of the reactor. In particular, numerical simulations indicate that with less mixing, the reactor is more efficient, removing more organic matter and producing more biogas
Livros sobre o assunto "Mathematical optimization"
Snyman, Jan A., e Daniel N. Wilke. Practical Mathematical Optimization. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77586-9.
Texto completo da fonteL, Rardin Ronald, ed. Discrete optimization. Boston: Academic Press, 1988.
Encontre o texto completo da fonteDingzhu, Du, Pardalos P. M. 1954- e Wu Weili, eds. Mathematical theory of optimization. Dordrecht: Kluwer Academic, 2001.
Encontre o texto completo da fonteHoffmann, Karl-Heinz, Jochem Zowe, Jean-Baptiste Hiriart-Urruty e Claude Lemarechal, eds. Trends in Mathematical Optimization. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-9297-1.
Texto completo da fontePallaschke, Diethard, e Stefan Rolewicz. Foundations of Mathematical Optimization. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-1588-1.
Texto completo da fonteHürlimann, Tony. Mathematical Modeling and Optimization. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-5793-4.
Texto completo da fonteDu, Ding-Zhu, Panos M. Pardalos e Weili Wu, eds. Mathematical Theory of Optimization. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5795-8.
Texto completo da fonteOberwolfach), Tagung Methoden und Verfahren der Mathematischen Physik (11th 1985 Mathematisches Forschungsinstitut. Optimization in mathematical physics. Frankfurt am Main: P. Lang, 1987.
Encontre o texto completo da fonteDu, Dingzhu. Mathematical Theory of Optimization. Boston, MA: Springer US, 2001.
Encontre o texto completo da fonteGuddat, Jürgen. Multiobjective and stochastic optimization based on parametric optimization. Berlin: Akademie-Verlag, 1985.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Mathematical optimization"
Schittkowski, Klaus. "Mathematical Optimization". In Software Systems for Structural Optimization, 33–42. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8553-9_2.
Texto completo da fonteWang, Liang, e Jianxin Zhao. "Mathematical Optimization". In Architecture of Advanced Numerical Analysis Systems, 87–119. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8853-5_4.
Texto completo da fontePappalardo, Elisa, Panos M. Pardalos e Giovanni Stracquadanio. "Mathematical Optimization". In SpringerBriefs in Optimization, 13–25. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9053-1_3.
Texto completo da fonteCao, Bing-Yuan. "Mathematical Preliminaries". In Applied Optimization, 1–22. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0009-4_1.
Texto completo da fonteKogan, Konstantin, e Eugene Khmelnitsky. "Mathematical Background". In Applied Optimization, 19–35. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4675-7_2.
Texto completo da fonteSchittkowski, Klaus. "Mathematical Foundations". In Applied Optimization, 7–118. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-5762-7_2.
Texto completo da fonteBelenky, Alexander S. "Mathematical Programming". In Applied Optimization, 13–90. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6075-0_2.
Texto completo da fonteLobato, Fran Sérgio, e Valder Steffen. "Mathematical". In Multi-Objective Optimization Problems, 77–108. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58565-9_5.
Texto completo da fonteNeumaier, Arnold. "Mathematical Model Building". In Applied Optimization, 37–43. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4613-0215-5_3.
Texto completo da fonteBhatti, M. Asghar. "Mathematical Preliminaries". In Practical Optimization Methods, 75–129. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0501-2_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Mathematical optimization"
De Kock, D. J., M. Nagulapally, J. A. Visser, R. Nair e J. Nigen. "Mathematical Optimization of Electronic Enclosures". In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73185.
Texto completo da fonteFindeisen, Bernd, Mario Schwalbe, Norman Gunther e Lutz Stiegler. "NVH Optimization of Driveline with Mathematical Optimization Methods". In Symposium on International Automotive Technology 2013. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-26-0089.
Texto completo da fontePoole, Daniel J., Christian B. Allen e T. Rendall. "Metric-Based Mathematical Derivation of Aerofoil Design Variables". In 10th AIAA Multidisciplinary Design Optimization Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0114.
Texto completo da fonteMorris, R. M., J. A. Snyman e Josua P. Meyer. "MATHEMATICAL OPTIMIZATION OF JETS IN CROSSFLOW". In Annals of the Assembly for International Heat Transfer Conference 13. Begell House Inc., 2006. http://dx.doi.org/10.1615/ihtc13.p26.200.
Texto completo da fonteEWING, M., e V. VENKAYYA. "Structural identification using mathematical optimization techniques". In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1135.
Texto completo da fonteAlmosa, Nadia Ali Abbas, e Ahmed Sabah Al-Jilawi. "Developing mathematical optimization models with Python". In AL-KADHUM 2ND INTERNATIONAL CONFERENCE ON MODERN APPLICATIONS OF INFORMATION AND COMMUNICATION TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0119585.
Texto completo da fonteLee, Eva K., Tsung-Lin Wu, Onur Seref, O. Erhun Kundakcioglu e Panos Pardalos. "Classification and disease prediction via mathematical programming". In DATA MINING, SYSTEMS ANALYSIS AND OPTIMIZATION IN BIOMEDICINE. AIP, 2007. http://dx.doi.org/10.1063/1.2817343.
Texto completo da fonteHerskovits, José. "A Mathematical Programming Algorithm for Multidisciplinary Design Optimization". In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-4502.
Texto completo da fonteChaabane, Amin. "Sustainable supply chains optimization: Mathematical modelling approach". In 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO 2013). IEEE, 2013. http://dx.doi.org/10.1109/icmsao.2013.6552611.
Texto completo da fonteDoblas-Charneco, Francisco Javier, Domingo Morales-Palma, Aida Estevez e Carpoforo Vallellano. "Mathematical Optimization of Cold Wire Drawing Operations". In 10th Manufacturing Engineering Society International Conference. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-3lhbry.
Texto completo da fonteRelatórios de organizações sobre o assunto "Mathematical optimization"
Lovianova, Iryna V., Dmytro Ye Bobyliev e Aleksandr D. Uchitel. Cloud calculations within the optional course Optimization Problems for 10th-11th graders. [б. в.], setembro de 2019. http://dx.doi.org/10.31812/123456789/3267.
Texto completo da fonteVenkayya, Vipperla B., e Victoria A. Tischler. A Compound Scaling Algorithm for Mathematical Optimization. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1989. http://dx.doi.org/10.21236/ada208446.
Texto completo da fonteEskow, Elizabeth, e Robert B. Schnabel. Mathematical Modeling of a Parallel Global Optimization Algorithm. Fort Belvoir, VA: Defense Technical Information Center, abril de 1988. http://dx.doi.org/10.21236/ada446514.
Texto completo da fonteDe Silva, K. N. A mathematical model for optimization of sample geometry for radiation measurements. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/122732.
Texto completo da fonteWegley, H. L., e J. C. Barnard. Using the NOABL flow model and mathematical optimization as a micrositing tool. Office of Scientific and Technical Information (OSTI), novembro de 1986. http://dx.doi.org/10.2172/6979883.
Texto completo da fonteTurinsky, Paul, e Ross Hays. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis. Office of Scientific and Technical Information (OSTI), setembro de 2011. http://dx.doi.org/10.2172/1024390.
Texto completo da fonteIyer, Ananth V., Samuel Labi, Steven R. Dunlop, Dutt J. Thakkar, Sayak Mishra, Lavanya Krishna Kumar, Runjia Du, Miheeth Gala, Apoorva Banerjee e Gokul Siddharthan. Heavy Fleet and Facilities Optimization. Purdue University, 2022. http://dx.doi.org/10.5703/1288284317365.
Texto completo da fonteHector Colonmer, Prabhu Ganesan, Nalini Subramanian, Dr. Bala Haran, Dr. Ralph E. White e Dr. Branko N. Popov. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING. Office of Scientific and Technical Information (OSTI), setembro de 2002. http://dx.doi.org/10.2172/808855.
Texto completo da fonteAnand Durairajan, Bala Haran, Branko N. Popov e Ralph E. White. OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING. Office of Scientific and Technical Information (OSTI), maio de 2000. http://dx.doi.org/10.2172/808968.
Texto completo da fonteDr. Ralph E. White. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING. Office of Scientific and Technical Information (OSTI), setembro de 2000. http://dx.doi.org/10.2172/808969.
Texto completo da fonte