Literatura científica selecionada sobre o tema "Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Mathematical models"
Gardiner, Tony, e Gerd Fischer. "Mathematical Models". Mathematical Gazette 71, n.º 455 (março de 1987): 94. http://dx.doi.org/10.2307/3616334.
Texto completo da fonteDenton, Brian, Pam Denton e Peter Lorimer. "Making Mathematical Models". Mathematical Gazette 78, n.º 483 (novembro de 1994): 364. http://dx.doi.org/10.2307/3620232.
Texto completo da fontePavankumari, V. "Mathematical and Stochastic Growth Models". International Journal for Research in Applied Science and Engineering Technology 9, n.º 11 (30 de novembro de 2021): 1576–82. http://dx.doi.org/10.22214/ijraset.2021.39055.
Texto completo da fonteKumari, V. Pavan, Venkataramana Musala e M. Bhupathi Naidu. "Mathematical and Stochastic Growth Models". International Journal for Research in Applied Science and Engineering Technology 10, n.º 5 (31 de maio de 2022): 987–89. http://dx.doi.org/10.22214/ijraset.2022.42330.
Texto completo da fonteSuzuki, Takashi. "Mathematical models of tumor growth systems". Mathematica Bohemica 137, n.º 2 (2012): 201–18. http://dx.doi.org/10.21136/mb.2012.142866.
Texto completo da fonteKogalovsky, M. R. "Digital Libraries of Economic-Mathematical Models: Economic-Mathematical and Information Models". Market Economy Problems, n.º 4 (2018): 89–97. http://dx.doi.org/10.33051/2500-2325-2018-4-89-97.
Texto completo da fonteBanasiak, J. "Kinetic models – mathematical models of everything?" Physics of Life Reviews 16 (março de 2016): 140–41. http://dx.doi.org/10.1016/j.plrev.2016.01.005.
Texto completo da fonteStaribratov, Ivaylo, e Nikol Manolova. "Application of Mathematical Models in Graphic Design". Mathematics and Informatics LXV, n.º 1 (28 de fevereiro de 2022): 72–81. http://dx.doi.org/10.53656/math2022-1-5-app.
Texto completo da fonteLEVKIN, Dmytro. "ARCHITECTONICS OF CALCULATED MATHEMATICAL MODELS UNDER UNCERTAINTY". Herald of Khmelnytskyi National University. Technical sciences 309, n.º 3 (26 de maio de 2022): 135–37. http://dx.doi.org/10.31891/2307-5732-2022-309-3-135-137.
Texto completo da fonteKleiner, Johannes. "Mathematical Models of Consciousness". Entropy 22, n.º 6 (30 de maio de 2020): 609. http://dx.doi.org/10.3390/e22060609.
Texto completo da fonteTeses / dissertações sobre o assunto "Mathematical models"
Tonner, Jaromír. "Overcomplete Mathematical Models with Applications". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233893.
Texto completo da fonteWidmer, Tobias K. "Reusable mathematical models". Zürich : ETH, Eidgenössische Technische Hochschule Zürich, Department of Computer Science, Chair of Software Engineering, 2004. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=192.
Texto completo da fonteMaggiori, Claudia. "Mathematical models in biomedicine". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21247/.
Texto completo da fonteMathewson, Donald Jeffrey. "Mathematical models of immunity". Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29575.
Texto completo da fonteScience, Faculty of
Physics and Astronomy, Department of
Graduate
Heron, Dale Robert. "Mathematical models of superconductivity". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296893.
Texto completo da fonteBozic, Ivana. "Mathematical Models of Cancer". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10220.
Texto completo da fonteMathematics
Luther, Roger. "Mathematical models of kleptoparasitism". Thesis, University of Sussex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410365.
Texto completo da fonteMazzag, Barbara Cathrine. "Mathematical models in biology /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Texto completo da fonteNiederhauser, Beat. "Mathematical Aspects of Hopfield models". [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960147535.
Texto completo da fonteKowalewski, Jacob. "Mathematical Models in Cellular Biophysics". Licentiate thesis, KTH, Applied Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4361.
Texto completo da fonteCellular biophysics deals with, among other things, transport processes within cells. This thesis presents two studies where mathematical models have been used to explain how two of these processes occur.
Cellular membranes separate cells from their exterior environment and also divide a cell into several subcellular regions. Since the 1970s lateral diffusion in these membranes has been studied, one the most important experimental techniques in these studies is fluorescence recovery after photobleach (FRAP). A mathematical model developed in this thesis describes how dopamine 1 receptors (D1R) diffuse in a neuronal dendritic membrane. Analytical and numerical methods have been used to solve the partial differential equations that are expressed in the model. The choice of method depends mostly on the complexity of the geometry in the model.
Calcium ions (Ca2+) are known to be involved in several intracellular signaling mechanisms. One interesting concept within this field is a signaling microdomain where the inositol 1,4,5-triphosphate receptor (IP3R) in the endoplasmic reticulum (ER) membrane physically interacts with plasma membrane proteins. This microdomain has been shown to cause the intracellular Ca2+ level to oscillate. The second model in this thesis describes a signaling network involving both ER membrane bound and plasma membrane Ca2+ channels and pumps, among them store-operated Ca2+ (SOC) channels. A MATLAB® toolbox was developed to implement the signaling networks and simulate its properties. This model was also implemented using Virtual cell.
The results show a high resemblance between the mathematical model and FRAP data in the D1R study. The model shows a distinct difference in recovery characteristics of simulated FRAP experiments on whole dendrites and dendritic spines, due to differences in geometry. The model can also explain trapping of D1R in dendritic spines.
The results of the Ca2+ signaling model show that stimulation of IP3R can cause Ca2+ oscillations in the same frequency range as has been seen in experiments. The removing of SOC channels from the model can alter the characteristics as well as qualitative appearance of Ca2+ oscillations.
Cellulär biofysik behandlar bland annat transportprocesser i celler. I denna avhandling presenteras två studier där matematiska modeller har använts för att förklara hur två av dess processer uppkommer.
Cellmembran separerar celler från deras yttre miljö och delar även upp en cell i flera subcellulära regioner. Sedan 1970-talet har lateral diffusion i dessa membran studerats, en av de viktigaste experimentella metoderna i dessa studier är fluorescence recovery after photobleach (FRAP). En matematisk modell utvecklad i denna avhandling beskriver hur dopamin 1-receptorer (D1R) diffunderar i en neural dendrits membran. Analytiska och numeriska metoder har använts för att lösa de partiella differentialekvationer som uttrycks i modellen. Valet av metod beror främst på komplexiteten hos geometrin i modellen.
Kalciumjoner (Ca2+) är kända för att ingå i flera intracellulära signalmekanismer. Ett intressant koncept inom detta fält är en signalerande mikrodomän där inositol 1,4,5-trifosfatreceptorn (IP3R) i endoplasmatiska nätverksmembranet (ER-membranet) fysiskt interagerar med proteiner i plasmamembranet. Denna mikrodomän har visats vara orsak till oscillationer i den intracellulära Ca2+-nivån. Den andra modellen i denna avhandling beskriver ett signalerande nätverk där både Ca2+-kanaler och pumpar bundna i ER-membranet och i plasmamembranet, däribland store-operated Ca2+(SOC)-kanaler, ingår. Ett MATLAB®-verktyg utvecklades för att implementera signalnätverket och simulera dess egenskaper. Denna modell implementerades även i Virtual cell.
Resultaten visar en stark likhet mellan den matematiska modellen och FRAP-datat i D1R-studien. Modellen visar en distinkt skillnad i återhämtningsegenskaper hos simulerade FRAP-experiment på hela dendriter och dendritiska spines, beroende på skillnader i geometri. Modellen kan även förklara infångning av D1R i dendritiska spines.
Resultaten från Ca2+-signaleringmodellen visar att stimulering av IP3R kan orsaka Ca2+-oscillationer inom samma frekvensområde som tidigare setts i experiment. Att ta bort SOC-kanaler från modellen kan ändra karaktär hos, såväl som den kvalitativa uppkomsten av Ca2+-oscillationer.
Livros sobre o assunto "Mathematical models"
Fischer, Gerd, ed. Mathematical Models. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-18865-8.
Texto completo da fonteTanguy, Jean-Michel, ed. Mathematical Models. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9781118557853.
Texto completo da fonteErshov, I͡Uriĭ Leonidovich. Constructive models. New York: Consultants Bureau, 2000.
Encontre o texto completo da fonteHrsg, Crampin Mike, ed. Mathematical models and methods: Mathematical modelling. Milton Keynes: Open University, 1993.
Encontre o texto completo da fonteTorres, Pedro J. Mathematical Models with Singularities. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-106-2.
Texto completo da fonteBorisov, Andrey Valerievich, e Anatoly Vlasovich Chigarev. Mathematical Models of Exoskeleton. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97733-7.
Texto completo da fonteStamova, Ivanka, e Gani Stamov. Applied Impulsive Mathematical Models. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28061-5.
Texto completo da fonteMayergoyz, I. D. Mathematical Models of Hysteresis. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3028-1.
Texto completo da fonteAnsorge, Rainer. Mathematical Models of Fluiddynamics. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2002. http://dx.doi.org/10.1002/3527602771.
Texto completo da fonteZazzu, Valeria, Maria Brigida Ferraro e Mario R. Guarracino, eds. Mathematical Models in Biology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23497-7.
Texto completo da fonteCapítulos de livros sobre o assunto "Mathematical models"
Holst, Niels. "Mathematical Models". In Decision Support Systems for Weed Management, 3–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44402-0_1.
Texto completo da fonteGross, Sven, e Arnold Reusken. "Mathematical models". In Springer Series in Computational Mathematics, 33–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19686-7_2.
Texto completo da fontePulido-Bosch, Antonio. "Mathematical Models". In Principles of Karst Hydrogeology, 195–240. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55370-8_6.
Texto completo da fonteHinrichsen, Diederich, e Anthony J. Pritchard. "Mathematical Models". In Mathematical Systems Theory I, 1–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26410-8_1.
Texto completo da fonteMarquardt, Wolfgang, Jan Morbach, Andreas Wiesner e Aidong Yang. "Mathematical Models". In OntoCAPE, 323–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04655-1_9.
Texto completo da fonteMauergauz, Yuri. "Mathematical Models". In Advanced Planning and Scheduling in Manufacturing and Supply Chains, 43–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27523-9_2.
Texto completo da fonteSkiena, Steven S. "Mathematical Models". In Texts in Computer Science, 201–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55444-0_7.
Texto completo da fonteThorn, Colin E. "Mathematical models". In An Introduction to Theoretical Geomorphology, 193–212. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-010-9441-2_13.
Texto completo da fonteLayer, Edward. "Mathematical Models". In Modelling of Simplified Dynamical Systems, 3–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56098-9_2.
Texto completo da fontePayne, Stephen. "Mathematical Models". In Cerebral Autoregulation, 39–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31784-7_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Mathematical models"
Morrow, Gregory J., e Wei-Shih Yang. "Probability Models in Mathematical Physics". In Conference on Probability Models in Mathematical Physics. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539852.
Texto completo da fonteWeckesser, Markus, Malte Lochau, Michael Ries e Andy Schürr. "Mathematical Programming for Anomaly Analysis of Clafer Models". In MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3239372.3239398.
Texto completo da fonteTweedie, Lisa, Robert Spence, Huw Dawkes e Hus Su. "Externalising abstract mathematical models". In the SIGCHI conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/238386.238587.
Texto completo da fonteLi, Yajun. "Mathematical models for diode laser beams". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thr5.
Texto completo da fonteMaskal, Alan B., e Fatih Aydogan. "Mathematical Models of Spacer Grids". In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60098.
Texto completo da fonteChilbert, M., J. Myklebust, T. Prieto, T. Swiontek e A. Sances. "Mathematical models of electrical injury". In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94632.
Texto completo da fonteBogdanov, Yu I., A. Yu Chernyavskiy, A. S. Holevo, V. F. Lukichev e A. A. Orlikovsky. "Mathematical models of quantum noise". In International Conference on Micro-and Nano-Electronics 2012, editado por Alexander A. Orlikovsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2017396.
Texto completo da fonteNedostup, Leonid, Yuriy Bobalo, Myroslav Kiselychnyk e Oxana Lazko. "Production Systems Complex Mathematical Models". In 2007 9th International Conference - The Experience of Designing and Applications of CAD Systems in Microelectronics. IEEE, 2007. http://dx.doi.org/10.1109/cadsm.2007.4297505.
Texto completo da fonteSanjana, N., M. S. Deepthi, H. R. Shashidhara e Yajunath Kaliyath. "Comparison of Memristor Mathematical Models". In 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2022. http://dx.doi.org/10.1109/discover55800.2022.9974669.
Texto completo da fonteDowding, Kevin. "Quantitative Validation of Mathematical Models". In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24308.
Texto completo da fonteRelatórios de organizações sobre o assunto "Mathematical models"
Mayergoyz, I. D. [Mathematical models of hysteresis]. Office of Scientific and Technical Information (OSTI), janeiro de 1991. http://dx.doi.org/10.2172/6911694.
Texto completo da fonteMayergoyz, I. D. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), setembro de 1992. http://dx.doi.org/10.2172/6946876.
Texto completo da fonteMayergoyz, I. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), agosto de 1989. http://dx.doi.org/10.2172/5246564.
Texto completo da fonteKaper, H. Mathematical models of superconductivity. Office of Scientific and Technical Information (OSTI), março de 1991. http://dx.doi.org/10.2172/5907100.
Texto completo da fonteRinghofer, Christian. Mathematical Models for VLSI Device Simulation. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1987. http://dx.doi.org/10.21236/ada191125.
Texto completo da fonteMayergoyz, Isaak. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS). Office of Scientific and Technical Information (OSTI), agosto de 2006. http://dx.doi.org/10.2172/889747.
Texto completo da fonteLovianova, Iryna V., Dmytro Ye Bobyliev e Aleksandr D. Uchitel. Cloud calculations within the optional course Optimization Problems for 10th-11th graders. [б. в.], setembro de 2019. http://dx.doi.org/10.31812/123456789/3267.
Texto completo da fonteDawson, Steven. The Genesis of Cyberscience and its Mathematical Models (CYBERSCIENCE). Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2005. http://dx.doi.org/10.21236/ada431570.
Texto completo da fonteSteefel, C., D. Moulton, G. Pau, K. Lipnikov, J. Meza, P. Lichtner, T. Wolery et al. Mathematical Formulation Requirements and Specifications for the Process Models. Office of Scientific and Technical Information (OSTI), novembro de 2010. http://dx.doi.org/10.2172/1000859.
Texto completo da fonteGelenbe, Erol. Mathematical Models by Quality of Service Driven Routing in Networks. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2005. http://dx.doi.org/10.21236/ada436700.
Texto completo da fonte