Literatura científica selecionada sobre o tema "Mathematical conjectures"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mathematical conjectures".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Mathematical conjectures"
Davies, Alex, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev, Richard Tanburn et al. "Advancing mathematics by guiding human intuition with AI". Nature 600, n.º 7887 (1 de dezembro de 2021): 70–74. http://dx.doi.org/10.1038/s41586-021-04086-x.
Texto completo da fonteZeybek Simsek, Zulfiye. "Constructing-Evaluating-Refining Mathematical Conjectures and Proofs". International Journal for Mathematics Teaching and Learning 21, n.º 2 (12 de dezembro de 2020): 197–215. http://dx.doi.org/10.4256/ijmtl.v21i2.263.
Texto completo da fonteAstawa, I. Wayan Puja. "The Differences in Students’ Cognitive Processes in Constructing Mathematical Conjecture". JPI (Jurnal Pendidikan Indonesia) 9, n.º 1 (31 de março de 2020): 49. http://dx.doi.org/10.23887/jpi-undiksha.v9i1.20846.
Texto completo da fonteAmir, Firana, e Mohammad Faizal Amir. "Action Proof: Analyzing Elementary School Students Informal Proving Stages through Counter-examples". International Journal of Elementary Education 5, n.º 2 (23 de agosto de 2021): 401. http://dx.doi.org/10.23887/ijee.v5i3.35089.
Texto completo da fonteBARTH, PETER. "IWASAWA THEORY FOR ONE-PARAMETER FAMILIES OF MOTIVES". International Journal of Number Theory 09, n.º 02 (5 de dezembro de 2012): 257–319. http://dx.doi.org/10.1142/s1793042112501357.
Texto completo da fonteMollin, R. A., e H. C. Williams. "Proof, Disproof and Advances Concerning Certain Conjectures on Real Quadratic Fields". Canadian Journal of Mathematics 47, n.º 5 (1 de outubro de 1995): 1023–36. http://dx.doi.org/10.4153/cjm-1995-054-7.
Texto completo da fonteBarahmand, Ali. "On Mathematical Conjectures and Counterexamples". Journal of Humanistic Mathematics 9, n.º 1 (janeiro de 2019): 295–303. http://dx.doi.org/10.5642/jhummath.201901.17.
Texto completo da fonteBarbosa, Lucas De Souza, Cinthya Maria Schneider Meneghetti e Cristiana Andrade Poffal. "O uso de geometria dinâmica e da investigação matemática na validação de propriedades geométricas". Ciência e Natura 41 (16 de julho de 2019): 12. http://dx.doi.org/10.5902/2179460x33752.
Texto completo da fonteRizos, Ioannis, e Nikolaos Gkrekas. "Is there room for conjectures in mathematics? The role of dynamic geometry environments". European Journal of Science and Mathematics Education 11, n.º 4 (1 de outubro de 2023): 589–98. http://dx.doi.org/10.30935/scimath/13204.
Texto completo da fonteFormanowicz, Piotr, e Krzysztof Tanaś. "The Fan–Raspaud conjecture: A randomized algorithmic approach and application to the pair assignment problem in cubic networks". International Journal of Applied Mathematics and Computer Science 22, n.º 3 (1 de outubro de 2012): 765–78. http://dx.doi.org/10.2478/v10006-012-0057-y.
Texto completo da fonteTeses / dissertações sobre o assunto "Mathematical conjectures"
Chilstrom, Peter. "Singular Value Inequalities: New Approaches to Conjectures". UNF Digital Commons, 2013. http://digitalcommons.unf.edu/etd/443.
Texto completo da fonteBergqvist, Tomas. "To explore and verify in mathematics". Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-9345.
Texto completo da fonteKeliher, Liam. "Results and conjectures related to the sharp form of the Littlewood conjecture". Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23402.
Texto completo da fonteTran, Anh Tuan. "The volume conjecture, the aj conjectures and skein modules". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44811.
Texto completo da fonteCheukam, Ngouonou Jovial. "Apprentissage automatique de cartes d’invariants d’objets combinatoires avec une application pour la synthèse d’algorithmes de filtrage". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0418.
Texto completo da fonteTo improve the efficiency of solution methods for many combinatorial optimisation problems in our daily lives, we use constraints programming to automatically generate conjectures. These conjectures characterise combinatorial objects used to model these optimisation problems. These include graphs, trees, forests, partitions and Boolean sequences. Unlike the state of the art, the system, called Bound Seeker, that we have developed not only generates conjectures independently, but it also points to links between conjectures. Thus, it groups the conjectures in the form of bounds of the same variable characterising the same combinatorial object. This grouping is called a bounds map of the combinatorial object considered. Then, a study consisting of establishing links between generated maps is carried out. The goal of this study is to deepen knowledge on combinatorial objects and to develop the beginnings of automatic proofs of conjectures. Then, to show the consistency of the maps and the Bound Seeker, we develop some manual proofs of the conjectures discovered by the Bound Seeker. This allows us to demonstrate the usefulness of some new bound theorems that we have established. To illustrate one of its concrete applications, we introduce a method for semi-automatic generation of filtering algorithms that reduce the search space for solutions to a combinatorial optimisation problem. This reduction is made thanks to the new bound theorems that we established after having automatically selected them from the conjectures generated by the Bound Seeker. To show the effectiveness of this technique, we successfully apply it to the problem of developing balanced academic courses for students
Mostert, Pieter. "Stark's conjectures". Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/18998.
Texto completo da fonteWe give a slightly more general version of the Rubin-Stark conjecture, but show that in most cases it follows from the standard version. After covering the necessary background, we state the principal Stark conjecture and show that although the conjecture depends on a choice of a set of places and a certain isomorphism of Q[GJ-modules, it is independent of these choices. The conjecture is shown to satisfy certain 'functoriality' properties, and we give proofs of the conjecture in some simple cases. The main body of this dissertation concerns a slightly more general version of the Rubin-Stark conjecture. A number of Galois modules. Connected with the conjecture are defined in chapter 4, and some results on exterior powers and Fitting ideals are stated. In chapter 5 the Rubin-Stark conjecture is stated and we show how its truth is unaffected by lowering the top field, changing a set S of places appropriately, and enlarging moduli. We end by giving proofs of the conjecture in several cases. A number of proofs, which would otherwise have interrupted the flow of the exposition, have been relegated to the appendix, resulting in this dissertation suffering from a bad case of appendicitis.
Puente, Philip C. "Crystallographic Complex Reflection Groups and the Braid Conjecture". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011877/.
Texto completo da fonteNarayanan, Sridhar. "Selberg's conjectures on Dirichlet series". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55517.
Texto completo da fonteJost, Thomas. "On Donovan's conjecture". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318785.
Texto completo da fonteKhoury, Joseph. "La conjecture de Serre". Thesis, University of Ottawa (Canada), 1996. http://hdl.handle.net/10393/9554.
Texto completo da fonteLivros sobre o assunto "Mathematical conjectures"
Nickerson, Raymond S. Mathematical reasoning: Patterns, problems, conjectures, and proofs. New York: Psychology Press, 2010.
Encontre o texto completo da fonteNickerson, Raymond S. Mathematical reasoning: Patterns, problems, conjectures, and proofs. New York: Psychology Press, 2010.
Encontre o texto completo da fonteE, Ladas G., ed. Dynamics of second order rational difference equations: With open problems and conjectures. Boca Raton, FL: Chapman & Hall/CRC, 2002.
Encontre o texto completo da fonteGraczyk, Jacek. The real Fatou conjecture. Princeton, N.J: Princeton University Press, 1998.
Encontre o texto completo da fonteSchwartz, Diane Driscoll. Conjecture & proof: An introduction to mathematical thinking. Fort Worth: Saunders College Pub., 1997.
Encontre o texto completo da fonteCharles, Figuieres, ed. Theory of conjectural variations. River Edge, NJ: World Scientific, 2004.
Encontre o texto completo da fonteSalamon, Peter. Facts, conjectures, and improvements for simulated annealing. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2003.
Encontre o texto completo da fonteGessen, Masha. Perfect Rigour: A Genius and the Mathematical Breakthrough of a Lifetime. New York: Icon Books, 2011.
Encontre o texto completo da fonteEcalle, Jean. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Paris: Hermann, 1992.
Encontre o texto completo da fonteGul, Faruk. Foundation of dynamic monopoly and the Coase conjecture. Stanford, Calif: Institute for Mathematical Studies in the Social Sciences, Stanford University, 1985.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Mathematical conjectures"
Tenenbaum, Gérald, e Michel Mendès France. "The major conjectures". In The Student Mathematical Library, 105–12. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/stml/006/05.
Texto completo da fonteLeuschke, Graham, e Roger Wiegand. "The Brauer-Thrall conjectures". In Mathematical Surveys and Monographs, 267–85. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/surv/181/15.
Texto completo da fonteDutta, S. P. "Syzygies and Homological Conjectures". In Mathematical Sciences Research Institute Publications, 139–56. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3660-3_7.
Texto completo da fonteRabe, Markus N., e Christian Szegedy. "Towards the Automatic Mathematician". In Automated Deduction – CADE 28, 25–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79876-5_2.
Texto completo da fonteBaldwin, John T. "Vaught and Morley Conjectures for ω-Stable Countable Theories". In Perspectives in Mathematical Logic, 365–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-07330-8_18.
Texto completo da fonteJahnel, Jörg. "Conjectures on the asymptotics of points of bounded height". In Mathematical Surveys and Monographs, 35–80. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/surv/198/03.
Texto completo da fonteShekhar, Sudhanshu, e R. Sujatha. "Introduction to the Conjectures of Birch and Swinnerton-Dyer". In Mathematical Lectures from Peking University, 1–17. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6664-2_1.
Texto completo da fonteCarmona, Rene, e Frederic Cerou. "Transport by Incompressible random velocity fields: Simula- tions & Mathematical Conjectures". In Mathematical Surveys and Monographs, 153–81. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/surv/064/04.
Texto completo da fonteMitchell, Stephen A. "On the Lichtenbaum-Quillen Conjectures from a Stable Homotopy-Theoretic Viewpoint". In Mathematical Sciences Research Institute Publications, 163–240. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-9526-3_7.
Texto completo da fonteDinneen, Michael J. "A Program-Size Complexity Measure for Mathematical Problems and Conjectures". In Computation, Physics and Beyond, 81–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27654-5_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Mathematical conjectures"
Herlina, Dina, Ely Susanti, Elika Kurniadi e Novita Sari. "Ability to prove mathematical conjectures through ICT-assisted creative problem solving learning for class VIII students". In THE 2ND NATIONAL CONFERENCE ON MATHEMATICS EDUCATION (NACOME) 2021: Mathematical Proof as a Tool for Learning Mathematics. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0142729.
Texto completo da fonteCastle, Sarah D. "Embracing Mathematical Conjecture Through Coding and Computational Thinking". In SIGCSE 2024: The 55th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3626253.3635561.
Texto completo da fonteGurevich, Shagmar. "Proof of the Kurlberg-Rudnick Rate Conjecture". In p-ADIC MATHEMATICAL PHYSICS: 2nd International Conference. AIP, 2006. http://dx.doi.org/10.1063/1.2193112.
Texto completo da fonteBurqan, Aliaa. "New algebraic insights to the Goldbach conjecture". In 5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS5), 020007. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0228106.
Texto completo da fonteWang, Yu. "The Mathematical Modeling and Proof of the Goldbach Conjecture". In 2018 3rd International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/msam-18.2018.6.
Texto completo da fonteChen, Gen-Fang. "Generalization of Steinhaus conjecture". In International Conference on Pure, Applied, and Computational Mathematics (PACM 2023), editado por Zhen Wang e Dunhui Xiao. SPIE, 2023. http://dx.doi.org/10.1117/12.2678950.
Texto completo da fonteCruz-Uribe, David, José María Martell e Carlos Pérez. "A note on the off-diagonal Muckenhoupt-Wheeden conjecture". In V International Course of Mathematical Analysis in Andalusia. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814699693_0006.
Texto completo da fonteCHIA, G. L., e SIEW-HUI ONG. "ON BARNETTE'S CONJECTURE AND CBP GRAPHS WITH GIVEN NUMBER OF HAMILTON CYCLES". In Third Asian Mathematical Conference 2000. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777461_0012.
Texto completo da fonteHuang, Junjie, Ying Xiao e Chenglian Liu. "A study of android calculator based on Lemoine’s conjecture". In MATHEMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN SCIENCE AND ENGINEERING II. Author(s), 2018. http://dx.doi.org/10.1063/1.5045419.
Texto completo da fonteJansirani, N., R. Rama e V. R. Dare. "A counter example to Steinberg conjecture". In INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN MATHEMATICS AND COMPUTATIONAL ENGINEERING: ICRAMCE 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0156823.
Texto completo da fonte