Siga este link para ver outros tipos de publicações sobre o tema: Mass transfer.

Artigos de revistas sobre o tema "Mass transfer"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Mass transfer".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Gekas, Vassilis. "Mass transfer modeling". Journal of Food Engineering 49, n.º 2-3 (agosto de 2001): 97–102. http://dx.doi.org/10.1016/s0260-8774(00)00223-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wesselingh, J. A. "Multicomponent Mass Transfer". Chemical Engineering Journal and the Biochemical Engineering Journal 60, n.º 1-3 (dezembro de 1995): 177–79. http://dx.doi.org/10.1016/0923-0467(96)80015-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Garofalo, Paolo S. "Mass transfer during gold precipitation within a vertically extensive vein network (Sigma deposit - Abitibi greenstone belt - Canada). Part II. Mass transfer calculations". European Journal of Mineralogy 16, n.º 5 (18 de outubro de 2004): 761–76. http://dx.doi.org/10.1127/0935-1221/2004/0016-0761.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Nakhman, A. D., e Yu V. Rodionov. "Generalized Solution of the Heat and Mass Transfer Problem". Advanced Materials & Technologies, n.º 4 (2017): 056–63. http://dx.doi.org/10.17277/amt.2017.04.pp.056-063.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hosovkyi, Roman, Diana Kindzera e Volodymyr Atamanyuk. "Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks". Chemistry & Chemical Technology 10, n.º 4 (15 de setembro de 2016): 459–63. http://dx.doi.org/10.23939/chcht10.04.459.

Texto completo da fonte
Resumo:
Diffusive mass transfer has been studied during drying of grinded sunflower stalks to produce fuel briquettes. Theoretical aspects of diffusive processes during filtration drying have been analyzed. The process of diffusive mass transfer during drying of grinded sunflower stalks particles of prismatic shape has been mathematically described. The temperature effect on effective diffusion coefficient has been examined.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wogelius, Roy A., Peter M. Morris, Michael A. Kertesz, Emmanuelle Chardon, Alexander I. R. Stark, Michele Warren e James R. Brydie. "Mineral surface reactivity and mass transfer in environmental mineralogy". European Journal of Mineralogy 19, n.º 3 (2 de julho de 2007): 297–307. http://dx.doi.org/10.1127/0935-1221/2007/0019-1727.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Coulson, J. M., J. F. Richardson, J. R. Backhurst e J. H. Harker. "Fluid flow, heat transfer and mass transfer". Filtration & Separation 33, n.º 2 (fevereiro de 1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wu, Kinwah. "Mass Transfer in Low Mass Close Binaries". International Astronomical Union Colloquium 163 (1997): 283–88. http://dx.doi.org/10.1017/s0252921100042755.

Texto completo da fonte
Resumo:
AbstractThe mass transfer process in low mass close binaries is reviewed. The driving mechanisms and the stability properties are discussed by means of general, simple formulations. A model in terms of mass transfer instabilities is suggested to explain the outbursts of GRO J1655–40 in 1994.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Kobayashi, Takeshi. "Immobilization and mass transfer." Japan journal of water pollution research 9, n.º 11 (1986): 696–98. http://dx.doi.org/10.2965/jswe1978.9.696.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

COLLINS II, G. W., J. C. BROWN e J. P. CASSINELLI. "Dynamical mass-transfer paradox". Nature 347, n.º 6292 (outubro de 1990): 433. http://dx.doi.org/10.1038/347433a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Sardeing, R., J. Aubin e C. Xuereb. "Gas–Liquid Mass Transfer". Chemical Engineering Research and Design 82, n.º 12 (dezembro de 2004): 1589–96. http://dx.doi.org/10.1205/cerd.82.12.1589.58030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Sardeing, R., J. Aubin, M. Poux e C. Xuereb. "Gas–Liquid Mass Transfer". Chemical Engineering Research and Design 82, n.º 9 (setembro de 2004): 1161–68. http://dx.doi.org/10.1205/cerd.82.9.1161.44158.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Chesnokov, V. M. "Mass Transfer in Liquids". Theoretical Foundations of Chemical Engineering 39, n.º 4 (julho de 2005): 419–24. http://dx.doi.org/10.1007/s11236-005-0097-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Yang, Yuqi, Matthew D. Biviano, Jixiang Guo, Joseph D. Berry e Raymond R. Dagastine. "Mass transfer between microbubbles". Journal of Colloid and Interface Science 571 (julho de 2020): 253–59. http://dx.doi.org/10.1016/j.jcis.2020.02.120.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Sucharov, Lance. "Heat and mass transfer". Advances in Water Resources 14, n.º 1 (fevereiro de 1991): 50. http://dx.doi.org/10.1016/0309-1708(91)90031-i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Fitt, V., J. R. Ockendon e M. Shillor. "Counter-current mass transfer". International Journal of Heat and Mass Transfer 28, n.º 4 (abril de 1985): 753–59. http://dx.doi.org/10.1016/0017-9310(85)90225-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Vieil, E., K. Meerholz, T. Matencio e J. Heinze. "Mass transfer and convolution". Journal of Electroanalytical Chemistry 368, n.º 1-2 (abril de 1994): 183–91. http://dx.doi.org/10.1016/0022-0728(93)03110-b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hansel, Armin. "Proton Transfer Mass Spectrometer". Europhysics News 35, n.º 6 (novembro de 2004): 197–99. http://dx.doi.org/10.1051/epn:2004606.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Quitzsch, K. "Heat and Mass Transfer". Zeitschrift für Physikalische Chemie 212, Part_2 (janeiro de 1999): 236–38. http://dx.doi.org/10.1524/zpch.1999.212.part_2.236.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Weatherley, Laurence R. "Electrically enhanced mass transfer". Heat Recovery Systems and CHP 13, n.º 6 (novembro de 1993): 515–37. http://dx.doi.org/10.1016/0890-4332(93)90004-f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Brites, Ana Maria, e Maria Norberta de Pinho. "Mass transfer in ultrafiltration". Journal of Membrane Science 61 (janeiro de 1991): 49–63. http://dx.doi.org/10.1016/0376-7388(91)80005-q.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ivanova, Natalia, Surjakanta Kundu e Ali Pourmand. "Unified Rapid Mass Transfer". Astrophysical Journal 971, n.º 1 (1 de agosto de 2024): 64. http://dx.doi.org/10.3847/1538-4357/ad583e.

Texto completo da fonte
Resumo:
Abstract We present a method to obtain rapid mass-loss rates in binary systems, specifically at the onset of mass transfer (MT) episodes. The method unifies atmospheric (underflow) and L 1 stream (overflow) mass rates in a single continuous procedure. The method uses averaged 3D properties of the binaries, such as effective binary potential and effective binary acceleration, to both evolve the donor and obtain properties of the matter at the L 1 plane. In the case of underflow, we obtain atmospheric stratification. Our method can be used for binaries with an extensive range of mass ratios, 0.01 ≤ q ≤ 100, and can also be applied to hot donors. The considered examples show that the MT rates obtained with this revised formalism always differ from the optically thin and optically thick MT rates widely used during the computations of binary evolution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

S. K. Abbouda, P. A. Seib, D. S. Chung e A. Song. "Heat and Mass Transfer in Stored Milo. Part II. Mass Transfer Model". Transactions of the ASAE 35, n.º 5 (1992): 1575–80. http://dx.doi.org/10.13031/2013.28770.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Kunze, Anna-Katharina, Philip Lutze, Manuela Kopatschek, Jan F. Maćkowiak, Jerzy Maćkowiak, Marcus Grünewald e Andrzej Górak. "Mass transfer measurements in absorption and desorption: Determination of mass transfer parameters". Chemical Engineering Research and Design 104 (dezembro de 2015): 440–52. http://dx.doi.org/10.1016/j.cherd.2015.08.025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Rhim, Jung A., e Jeong Hyo Yoon. "Mass transfer characteristics and overall mass transfer coefficient in the ozone contactor". Korean Journal of Chemical Engineering 22, n.º 2 (março de 2005): 201–7. http://dx.doi.org/10.1007/bf02701485.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Iliuta, Ion, Maria C. Iliuta e Fernand C. Thyrion. "Gas-liquid mass transfer in trickle-bed reactors: Gas-side mass transfer". Chemical Engineering & Technology 20, n.º 9 (dezembro de 1997): 589–95. http://dx.doi.org/10.1002/ceat.270200904.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Barna, Iryna, Yaroslav Gumnytskyi e Volodymyr Atamanyuk. "Intradiffusion Mass Transfer during Drying of Slag Gravel Raw Granule". Chemistry & Chemical Technology 7, n.º 4 (15 de dezembro de 2013): 461–65. http://dx.doi.org/10.23939/chcht07.04.461.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Dyachok, Vasyl, Serhiy Huhlych, Yuri Yatchyshyn, Yulia Zaporochets e Viktoriia Katysheva. "About the Problem of Biological Processes Complicated by Mass Transfer". Chemistry & Chemical Technology 11, n.º 1 (15 de março de 2017): 111–16. http://dx.doi.org/10.23939/chcht11.01.111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Gichan, O. I. "Dynamic instabilities on a charged boundary: influence of mass transfer". Reports of the National Academy of Sciences of Ukraine, n.º 10 (16 de novembro de 2016): 47–53. http://dx.doi.org/10.15407/dopovidi2016.10.047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Durand, Cyril, Emilien Oliot, Didier Marquer e Jean-Pierre Sizun. "Chemical mass transfer in shear zones and metacarbonate xenoliths: a comparison of four mass balance approaches". European Journal of Mineralogy 27, n.º 6 (14 de dezembro de 2015): 731–54. http://dx.doi.org/10.1127/ejm/2015/0027-2475.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Pongayi Ponnusamy Selvi and Rajoo Baskar, Pongayi Ponnusamy Selvi and Rajoo Baskar. "Mass Transfer Enhancement for CO2 Absorption in Structured Packed Absorption Column". Journal of the chemical society of pakistan 41, n.º 5 (2019): 820. http://dx.doi.org/10.52568/000803/jcsp/41.05.2019.

Texto completo da fonte
Resumo:
The acidic gas, Carbon dioxide (CO2) absorption in aqueous ammonia solvent was carried as an example for industrial gaseous treatment. The packed column was provided with a novel structured BX-DX packing material. The overall mass transfer coefficient was calculated from the absorption efficiency of the various runs. Due to the high solubility of CO2, mass transfer was shown to be mainly controlled by gas side transfer rates. The effects of different operating parameters on KGav including CO2 partial pressure, total gas flow rates, volume flow rate of aqueous ammonia solution, aqueous ammonia concentration, and reaction temperature were investigated. For a particular system and operating conditions structured packing provides higher mass transfer coefficient than that of commercial random packing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Selim, A. M., e M. M. Elsayed. "Interfacial mass transfer and mass transfer coefficient in aqua ammonia packed bed absorber". International Journal of Refrigeration 22, n.º 4 (junho de 1999): 263–74. http://dx.doi.org/10.1016/s0140-7007(98)00073-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Cheremisinoff, N. P. "Handbook of heat and mass transfer, Vol. 2: Mass transfer and reactor design." Chemical Engineering Science 42, n.º 10 (1987): 2494. http://dx.doi.org/10.1016/0009-2509(87)80132-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Horvath, E., E. Nagy, C. Boyadjiev e J. Gyenis. "Interphase mass transfer between liquid-liquid counter-current flows. II. Mass transfer kinetics". Journal of Engineering Physics and Thermophysics 80, n.º 4 (julho de 2007): 728–33. http://dx.doi.org/10.1007/s10891-007-0099-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Lisovsky, A. F. "Some features of mass transfer in composite materials". Science of Sintering 50, n.º 4 (2018): 395–400. http://dx.doi.org/10.2298/sos1804395l.

Texto completo da fonte
Resumo:
The paper deals with the process of mass transfer in a two-phase system which consists of a mobile phase (a liquid or a gas) and dispersed particles forming a spacial structure, i.e. a skeleton. It is shown that in systems like this the process of the mobile phase transfers is greatly affected by forces generated at both interfaces and particle boundaries. These forces are responsible for new regularities of the mass transfer in dispersed systems, in particular, a spontaneous increase in an intensive variable is a possibility.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Matkivska, Iryna, Yaroslav Gumnytskyi e Volodymyr Atamanyuk. "Kinetics of Diffusion Mass Transfer during Filtration Drying of Grain Materials". Chemistry & Chemical Technology 8, n.º 3 (1 de setembro de 2014): 359–63. http://dx.doi.org/10.23939/chcht08.03.359.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Jansen, T. G. T., P. A. Lovell, J. Meuldijk e A. M. van Herk. "Mass Transfer in Miniemulsion Polymerisation". Macromolecular Symposia 333, n.º 1 (novembro de 2013): 24–34. http://dx.doi.org/10.1002/masy.201300050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Simal, Susana, J. A. Cárcel, J. Bon, Á. Castell-Palou e Carmen Rosselló. "Mass Transfer Modelling in an Acoustic-Assisted Osmotic Process". Defect and Diffusion Forum 258-260 (outubro de 2006): 600–609. http://dx.doi.org/10.4028/www.scientific.net/ddf.258-260.600.

Texto completo da fonte
Resumo:
Ultrasounds are mechanical waves that produce different effects when travelling through a medium, some related to mass transfer (i.e. microstirring at the interface, the so called "sponge effect" and cavitations). Thus, ultrasound appears to be a way to reduce both the internal and external resistances in osmotic food drying processes. In this study, the influence of the ultrasounds on water and solute transports during osmotic processes of drying is evaluated. Two different systems have been studied, apple slabs immersed in 30ºBrix sucrose solution, and pork loin slabs in sodium chloride saturated brine. The mathematical modelling of the mass transfers has been carried out by assuming diffusional mechanism and considering the mutual effect between the two mass transfers, the water losses and solute gains. The mass transfer curves in the osmotic process of apple drying in sucrose solution were satisfactorily simulated by using a diffusional model considering independent mass fluxes. Nevertheless, this model did not allow for the accurate simulation of the water losses in the system constituted by pork-loin in saline solution. When the mass fluxes were considered mutually affected, the simulation was accurate for both cases water and solute transfer.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

KOYAMA, Kazuya, Takamasa OGINO, Yasuhiro FUKUNAKA e Zenjiro ASAKI. "Mass Transfer in Powder Injection." Shigen-to-Sozai 110, n.º 1 (1994): 23–29. http://dx.doi.org/10.2473/shigentosozai.110.23.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Xue-Zheng, Hu, Liu Jun-Kang, Yu Xue-Jun e Liu Song-Qin. "Interfacial Instability and Mass Transfer". Acta Physico-Chimica Sinica 14, n.º 11 (1998): 1053–56. http://dx.doi.org/10.3866/pku.whxb19981118.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

., Sonia. "Topic heat and mass transfer". International Journal of Applied Research 7, n.º 12 (1 de dezembro de 2021): 109–17. http://dx.doi.org/10.22271/allresearch.2021.v7.i12b.9621.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Kawai, Yosuke. "Proton Transfer Reaction Mass Spectrometry". Journal of the Mass Spectrometry Society of Japan 70, n.º 1 (1 de março de 2022): 70–71. http://dx.doi.org/10.5702/massspec.s22-12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Jacobi, Dipl Biotechnol Anna, Dipl Ing Dragomira Ivanova e Prof Dr Ing Clemens Posten. "Photobioreactors: Hydrodynamics and mass transfer". IFAC Proceedings Volumes 43, n.º 6 (2010): 162–67. http://dx.doi.org/10.3182/20100707-3-be-2012.0033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kärnä, Aki, Mika Järvinen e Timo Fabritius. "Supersonic Lance Mass Transfer Modelling". Materials Science Forum 762 (julho de 2013): 686–90. http://dx.doi.org/10.4028/www.scientific.net/msf.762.686.

Texto completo da fonte
Resumo:
Numerical models of steelmaking processes are essential tools for process development and optimisation. A usable model is detailed enough to provide reliable results and not to slow to run. In order to make a fast and accurate model of a single process, all model parameters must be known well. This can be achieved by first simulating detailed models from which the parameters are obtained.In many converter processes oxygen is delivered into melt by supersonic top lance blowing. When such process is modeled, a model describing mass transfer from the lance into melt surface is needed.This paper describes numerical modeling of mass transfer by supersonic lances. Lance flow CFD models are used to determine mass transfer coefficients for typical lance applications. Models are validated with supersonic nozzle data and wall impinging jet mass transfer data from literature. The results are later used in fast process simulation models.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Nishiki, Tadaaki. "Mass Transfer in Reverse Micelles." membrane 25, n.º 1 (2000): 11–16. http://dx.doi.org/10.5360/membrane.25.11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Fukuda, Makoto. "Mass Transfer in a Dialyzer". MEMBRANE 37, n.º 1 (2012): 10–16. http://dx.doi.org/10.5360/membrane.37.10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Zaki, M. M., Y. A. EL‐Taweel, A. A. Zatout, M. Z. El‐Abd e G. H. Sadahmed. "Mass Transfer at Oscillating Grids". Journal of The Electrochemical Society 138, n.º 2 (1 de fevereiro de 1991): 430–34. http://dx.doi.org/10.1149/1.2085604.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Pavlovskii, K., e N. Ivanova. "Mass transfer from giant donors". Monthly Notices of the Royal Astronomical Society 449, n.º 4 (14 de abril de 2015): 4415–27. http://dx.doi.org/10.1093/mnras/stv619.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Saito, Noritsuna, Hitoshi Kosuge e Koichi Asano. "Mass Transfer in Heterogeneous Distillation." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 31, n.º 5 (1998): 758–64. http://dx.doi.org/10.1252/jcej.31.758.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Krishna, R., e J. M. van Baten. "Mass transfer in bubble columns". Catalysis Today 79-80 (abril de 2003): 67–75. http://dx.doi.org/10.1016/s0920-5861(03)00046-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia