Siga este link para ver outros tipos de publicações sobre o tema: Mapping class subgroups.

Artigos de revistas sobre o tema "Mapping class subgroups"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Mapping class subgroups".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Matsuzaki, Katsuhiko. "Polycyclic quasiconformal mapping class subgroups". Pacific Journal of Mathematics 251, n.º 2 (3 de junho de 2011): 361–74. http://dx.doi.org/10.2140/pjm.2011.251.361.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Clay, Matt, Johanna Mangahas e Dan Margalit. "Right-angled Artin groups as normal subgroups of mapping class groups". Compositio Mathematica 157, n.º 8 (27 de julho de 2021): 1807–52. http://dx.doi.org/10.1112/s0010437x21007417.

Texto completo da fonte
Resumo:
We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal subgroup of the mapping class group that is not contained in any level $m$ congruence subgroup and (2) we produce an explicit example of a pseudo-Anosov mapping class with the property that all of its even powers have free normal closure and its odd powers normally generate the entire mapping class group. The technical theorem at the heart of our work is a new version of the windmill apparatus of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the projection complexes of Bestvina–Bromberg–Fujiwara.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Calegari, Danny, e Lvzhou Chen. "Normal subgroups of big mapping class groups". Transactions of the American Mathematical Society, Series B 9, n.º 30 (19 de outubro de 2022): 957–76. http://dx.doi.org/10.1090/btran/108.

Texto completo da fonte
Resumo:
Let S S be a surface and let Mod ⁡ ( S , K ) \operatorname {Mod}(S,K) be the mapping class group of S S permuting a Cantor subset K ⊂ S K \subset S . We prove two structure theorems for normal subgroups of Mod ⁡ ( S , K ) \operatorname {Mod}(S,K) . (Purity:) if S S has finite type, every normal subgroup of Mod ⁡ ( S , K ) \operatorname {Mod}(S,K) either contains the kernel of the forgetful map to the mapping class group of S S , or it is ‘pure’ — i.e. it fixes the Cantor set pointwise. (Inertia:) for any n n element subset Q Q of the Cantor set, there is a forgetful map from the pure subgroup PMod ⁡ ( S , K ) \operatorname {PMod}(S,K) of Mod ⁡ ( S , K ) \operatorname {Mod}(S,K) to the mapping class group of ( S , Q ) (S,Q) fixing Q Q pointwise. If N N is a normal subgroup of Mod ⁡ ( S , K ) \operatorname {Mod}(S,K) contained in PMod ⁡ ( S , K ) \operatorname {PMod}(S,K) , its image N Q N_Q is likewise normal. We characterize exactly which finite-type normal subgroups N Q N_Q arise this way. Several applications and numerous examples are also given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kim, Heejoung. "Stable subgroups and Morse subgroups in mapping class groups". International Journal of Algebra and Computation 29, n.º 05 (8 de julho de 2019): 893–903. http://dx.doi.org/10.1142/s0218196719500346.

Texto completo da fonte
Resumo:
For a finitely generated group, there are two recent generalizations of the notion of a quasiconvex subgroup of a word-hyperbolic group, namely a stable subgroup and a Morse or strongly quasiconvex subgroup. Durham and Taylor [M. Durham and S. Taylor, Convex cocompactness and stability in mapping class groups, Algebr. Geom. Topol. 15(5) (2015) 2839–2859] defined stability and proved stability is equivalent to convex cocompactness in mapping class groups. Another natural generalization of quasiconvexity is given by the notion of a Morse or strongly quasiconvex subgroup of a finitely generated group, studied recently by Tran [H. Tran, On strongly quasiconvex subgroups, To Appear in Geom. Topol., preprint (2017), arXiv:1707.05581 ] and Genevois [A. Genevois, Hyperbolicities in CAT (0) cube complexes, preprint (2017), arXiv:1709.08843 ]. In general, a subgroup is stable if and only if the subgroup is Morse and hyperbolic. In this paper, we prove that two properties of being Morse and stable coincide for a subgroup of infinite index in the mapping class group of an oriented, connected, finite type surface with negative Euler characteristic.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Leininger, Christopher J., e D. B. McReynolds. "Separable subgroups of mapping class groups". Topology and its Applications 154, n.º 1 (janeiro de 2007): 1–10. http://dx.doi.org/10.1016/j.topol.2006.03.013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bavard, Juliette, Spencer Dowdall e Kasra Rafi. "Isomorphisms Between Big Mapping Class Groups". International Mathematics Research Notices 2020, n.º 10 (25 de maio de 2018): 3084–99. http://dx.doi.org/10.1093/imrn/rny093.

Texto completo da fonte
Resumo:
Abstract We show that any isomorphism between mapping class groups of orientable infinite-type surfaces is induced by a homeomorphism between the surfaces. Our argument additionally applies to automorphisms between finite-index subgroups of these “big” mapping class groups and shows that each finite-index subgroup has finite outer automorphism group. As a key ingredient, we prove that all simplicial automorphisms between curve complexes of infinite-type orientable surfaces are induced by homeomorphisms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Farb, Benson, e Lee Mosher. "Convex cocompact subgroups of mapping class groups". Geometry & Topology 6, n.º 1 (14 de março de 2002): 91–152. http://dx.doi.org/10.2140/gt.2002.6.91.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Berrick, A. J., V. Gebhardt e L. Paris. "Finite index subgroups of mapping class groups". Proceedings of the London Mathematical Society 108, n.º 3 (5 de agosto de 2013): 575–99. http://dx.doi.org/10.1112/plms/pdt022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Anderson, James W., Javier Aramayona e Kenneth J. Shackleton. "Free subgroups of surface mapping class groups". Conformal Geometry and Dynamics of the American Mathematical Society 11, n.º 04 (15 de março de 2007): 44–55. http://dx.doi.org/10.1090/s1088-4173-07-00156-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Franks, John, e Kamlesh Parwani. "Zero entropy subgroups of mapping class groups". Geometriae Dedicata 186, n.º 1 (18 de outubro de 2016): 27–38. http://dx.doi.org/10.1007/s10711-016-0178-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Szepietowski, Błażej. "On finite index subgroups of the mapping class group of a nonorientable surface". Glasnik Matematicki 49, n.º 2 (18 de dezembro de 2014): 337–50. http://dx.doi.org/10.3336/gm.49.2.08.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

KENT IV, RICHARD P., e CHRISTOPHER J. LEININGER. "Uniform convergence in the mapping class group". Ergodic Theory and Dynamical Systems 28, n.º 4 (agosto de 2008): 1177–95. http://dx.doi.org/10.1017/s0143385707000818.

Texto completo da fonte
Resumo:
AbstractWe characterize convex cocompact subgroups of the mapping class group of a surface in terms of uniform convergence actions on the zero locus of the limit set. We also construct subgroups that act as uniform convergence groups on their limit sets, but are not convex cocompact.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Bestvina, Mladen, e Koji Fujiwara. "Bounded cohomology of subgroups of mapping class groups". Geometry & Topology 6, n.º 1 (1 de março de 2002): 69–89. http://dx.doi.org/10.2140/gt.2002.6.69.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Broughton, Allen, e Aaron Wootton. "Finite abelian subgroups of the mapping class group". Algebraic & Geometric Topology 7, n.º 4 (17 de dezembro de 2007): 1651–97. http://dx.doi.org/10.2140/agt.2007.7.1651.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Masbaum, G., e A. W. Reid. "Frattini and related subgroups of mapping class groups". Proceedings of the Steklov Institute of Mathematics 292, n.º 1 (janeiro de 2016): 143–52. http://dx.doi.org/10.1134/s0081543816010090.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Masbaum, G., e A. W. Reid. "Frattini and Related Subgroups of Mapping Class Groups". Труды математического института им. Стеклова 292, n.º 01 (2016): 149–58. http://dx.doi.org/10.1134/s037196851601009x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Stukow, Michal. "Commensurability of geometric subgroups of mapping class groups". Geometriae Dedicata 143, n.º 1 (dezembro de 2009): 117–42. http://dx.doi.org/10.1007/s10711-009-9377-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Whittlesey, Kim. "Normal all pseudo-Anosov subgroups of mapping class groups". Geometry & Topology 4, n.º 1 (10 de outubro de 2000): 293–307. http://dx.doi.org/10.2140/gt.2000.4.293.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Berrick, A. J., E. Hanbury e J. Wu. "Brunnian subgroups of mapping class groups and braid groups". Proceedings of the London Mathematical Society 107, n.º 4 (27 de março de 2013): 875–906. http://dx.doi.org/10.1112/plms/pds096.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Liang, Hao. "Centralizers of finite subgroups of the mapping class group". Algebraic & Geometric Topology 13, n.º 3 (9 de maio de 2013): 1513–30. http://dx.doi.org/10.2140/agt.2013.13.1513.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Vlamis, Nicholas. "Quasiconformal homogeneity and subgroups of the mapping class group". Michigan Mathematical Journal 64, n.º 1 (março de 2015): 53–75. http://dx.doi.org/10.1307/mmj/1427203285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Aramayona, Javier, e Louis Funar. "Quotients of the mapping class group by power subgroups". Bulletin of the London Mathematical Society 51, n.º 3 (4 de fevereiro de 2019): 385–98. http://dx.doi.org/10.1112/blms.12236.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Anderson, James W., Javier Aramayona e Kenneth J. Shackleton. "Corrigendum to ‘‘Free subgroups of surface mapping class groups”". Conformal Geometry and Dynamics of the American Mathematical Society 13, n.º 07 (26 de maio de 2009): 136–38. http://dx.doi.org/10.1090/s1088-4173-09-00193-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Leininger, Christopher, e Jacob Russell. "Pseudo-Anosov subgroups of general fibered 3–manifold groups". Transactions of the American Mathematical Society, Series B 10, n.º 32 (24 de agosto de 2023): 1141–72. http://dx.doi.org/10.1090/btran/157.

Texto completo da fonte
Resumo:
We show that finitely generated and purely pseudo-Anosov subgroups of fundamental groups of fibered 3–manifolds with reducible monodromy are convex cocompact as subgroups of the mapping class group via the Birman exact sequence. Combined with results of Dowdall–Kent–Leininger and Kent–Leininger–Schleimer, this establishes the result for the image of all such fibered 3–manifold groups in the mapping class group.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

AKITA, TOSHIYUKI, e NARIYA KAWAZUMI. "Integral Riemann–Roch formulae for cyclic subgroups of mapping class groups". Mathematical Proceedings of the Cambridge Philosophical Society 144, n.º 2 (março de 2008): 411–21. http://dx.doi.org/10.1017/s0305004107001016.

Texto completo da fonte
Resumo:
AbstractThe first author conjectured certain relations for Morita–Mumford classes and Newton classes in the integral cohomology of mapping class groups (integral Riemann–Roch formulae). In this paper, the conjecture is verified for cyclic subgroups of mapping class groups.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

McCarthy, John. "A "Tits-Alternative" for Subgroups of Surface Mapping Class Groups". Transactions of the American Mathematical Society 291, n.º 2 (outubro de 1985): 583. http://dx.doi.org/10.2307/2000100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Keating, Ailsa M. "Dehn twists and free subgroups of symplectic mapping class groups". Journal of Topology 7, n.º 2 (4 de setembro de 2013): 436–74. http://dx.doi.org/10.1112/jtopol/jtt033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

McCarthy, John. "A ‘‘Tits-alternative” for subgroups of surface mapping class groups". Transactions of the American Mathematical Society 291, n.º 2 (1 de fevereiro de 1985): 583. http://dx.doi.org/10.1090/s0002-9947-1985-0800253-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Long, D. D. "A note on the normal subgroups of mapping class groups". Mathematical Proceedings of the Cambridge Philosophical Society 99, n.º 1 (janeiro de 1986): 79–87. http://dx.doi.org/10.1017/s0305004100063957.

Texto completo da fonte
Resumo:
0. If Fg is a closed, orientable surface of genus g, then the mapping class group of Fg is the group whose elements are orientation preserving self homeomorphisms of Fg modulo isotopy. We shall denote this group by Mg. Recall that a group is said to be linear if it admits a faithful representation as a group of matrices (where the entries for this purpose will be in some field).
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Behrstock, Jason, e Dan Margalit. "Curve Complexes and Finite Index Subgroups of Mapping Class Groups". Geometriae Dedicata 118, n.º 1 (março de 2006): 71–85. http://dx.doi.org/10.1007/s10711-005-9022-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

OHSHIKA, Ken'ichi. "Finite subgroups of mapping class groups of geometric $3$ -manifolds". Journal of the Mathematical Society of Japan 39, n.º 3 (julho de 1987): 447–54. http://dx.doi.org/10.2969/jmsj/03930447.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Dicks, Warren, e Edward Formanek. "Automorphism Subgroups of Finite Index in Algebraic Mapping Class Groups". Journal of Algebra 189, n.º 1 (março de 1997): 58–89. http://dx.doi.org/10.1006/jabr.1996.6876.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Brendle, Tara E., e Dan Margalit. "Normal subgroups of mapping class groups and the metaconjecture of Ivanov". Journal of the American Mathematical Society 32, n.º 4 (27 de agosto de 2019): 1009–70. http://dx.doi.org/10.1090/jams/927.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Humphries, Stephen P. "An action of subgroups of mapping class groups on polynomial algebras". Topology and its Applications 154, n.º 6 (março de 2007): 1053–83. http://dx.doi.org/10.1016/j.topol.2006.10.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Leininger, C. J., e A. W. Reid. "A combination theorem for Veech subgroups of the mapping class group". GAFA Geometric And Functional Analysis 16, n.º 2 (abril de 2006): 403–36. http://dx.doi.org/10.1007/s00039-006-0556-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Mangahas, Johanna. "Uniform Uniform Exponential Growth of Subgroups of the Mapping Class Group". Geometric and Functional Analysis 19, n.º 5 (15 de dezembro de 2009): 1468–80. http://dx.doi.org/10.1007/s00039-009-0038-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

GARDINER, F. P., e N. LAKIC. "A VECTOR FIELD APPROACH TO MAPPING CLASS ACTIONS". Proceedings of the London Mathematical Society 92, n.º 2 (20 de fevereiro de 2006): 403–27. http://dx.doi.org/10.1112/s0024611505015558.

Texto completo da fonte
Resumo:
We present a vector field method for showing that certain subgroups of the mapping class group $\Gamma$ of a Riemann surface of infinite topological type act properly discontinuously. We apply the method to the group of homotopy classes of quasiconformal self-maps of the complement $\Omega$ of a Cantor set in $\mathbb{C}$. When the Cantor set has bounded geometric type, we show that $\Gamma(\Omega)$ acts on the Teichmüller space $T(\Omega)$ properly discontinuously. Also, we apply the same method to show that the pure mapping class group $\Gamma_0(\Omega \cup \{\infty\})$ acts properly discontinuously on $T(\Omega \cup \{\infty\})$.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Ohshika, Ken’ichi, e Makoto Sakuma. "Subgroups of mapping class groups related to Heegaard splittings and bridge decompositions". Geometriae Dedicata 180, n.º 1 (18 de junho de 2015): 117–34. http://dx.doi.org/10.1007/s10711-015-0094-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Lanier, Justin, e Marissa Loving. "Centers of subgroups of big mapping class groups and the Tits alternative". Glasnik Matematicki 55, n.º 1 (12 de junho de 2020): 85–91. http://dx.doi.org/10.3336/gm.55.1.07.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Bridson, Martin R. "On the subgroups of right-angled Artin groups and mapping class groups". Mathematical Research Letters 20, n.º 2 (2013): 203–12. http://dx.doi.org/10.4310/mrl.2013.v20.n2.a1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Hadari, Asaf. "Non virtually solvable subgroups of mapping class groups have non virtually solvable representations". Groups, Geometry, and Dynamics 14, n.º 4 (12 de novembro de 2020): 1333–50. http://dx.doi.org/10.4171/ggd/583.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Putman, Andrew, e Ben Wieland. "Abelian quotients of subgroups of the mapping class group and higher Prym representations". Journal of the London Mathematical Society 88, n.º 1 (12 de março de 2013): 79–96. http://dx.doi.org/10.1112/jlms/jdt001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

McCarthy, John D. "On the first cohomology group of cofinite subgroups in surface mapping class groups". Topology 40, n.º 2 (março de 2001): 401–18. http://dx.doi.org/10.1016/s0040-9383(99)00066-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

KAPOVICH, ILYA, e MARTIN LUSTIG. "PING-PONG AND OUTER SPACE". Journal of Topology and Analysis 02, n.º 02 (junho de 2010): 173–201. http://dx.doi.org/10.1142/s1793525310000318.

Texto completo da fonte
Resumo:
We prove that, if φ, ψ ∈ Out (FN) are hyperbolic iwips (irreducible with irreducible powers) such that 〈φ, ψ〉 ⊆ Out (FN) is not virtually cyclic, then some high powers of φ and ψ generate a free subgroup of rank two for which all nontrivial elements are again hyperbolic iwips. Being a hyperbolic iwip element of Out (FN) is strongly analogous to being a pseudo-Anosov element of a mapping class group, so the above result provides analogues of "purely pseudo-Anosov" free subgroups in Out (FN).
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Putman, Andrew. "The Johnson homomorphism and its kernel". Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, n.º 735 (1 de fevereiro de 2018): 109–41. http://dx.doi.org/10.1515/crelle-2015-0017.

Texto completo da fonte
Resumo:
AbstractWe give a new proof of a celebrated theorem of Dennis Johnson that asserts that the kernel of the Johnson homomorphism on the Torelli subgroup of the mapping class group is generated by separating twists. In fact, we prove a more general result that also applies to “subsurface Torelli groups”. Using this, we extend Johnson’s calculation of the rational abelianization of the Torelli group not only to the subsurface Torelli groups, but also to finite-index subgroups of the Torelli group that contain the kernel of the Johnson homomorphism.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Lee, Chun-Nip. "Farrell cohomology and centralizets of elementary abelian p-subgroups". Mathematical Proceedings of the Cambridge Philosophical Society 119, n.º 3 (abril de 1996): 403–17. http://dx.doi.org/10.1017/s0305004100074302.

Texto completo da fonte
Resumo:
Let Γ be a discrete group. Γ is said to have finite virtual cohomological dimension (vcd) if there exists a finite index torsion-free subgroup Γ′ of G such that Γ′ has finite cohomological dimension over ℤ. Examples of such groups include finite groups, fundamental group of a finite graph of finite groups, arithmetic groups, mapping class groups and outer automorphism groups of free groups. One of the fundamental problems in topology is to understand the cohomology of these finite vcd-groups.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Juan-Pineda, Daniel, e Alejandra Trujillo-Negrete. "On classifying spaces for the family of virtually cyclic subgroups in mapping class groups". Pure and Applied Mathematics Quarterly 12, n.º 2 (2016): 261–92. http://dx.doi.org/10.4310/pamq.2016.v12.n2.a4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Putman, Andrew. "A note on the abelianizations of finite-index subgroups of the mapping class group". Proceedings of the American Mathematical Society 138, n.º 02 (30 de setembro de 2009): 753–58. http://dx.doi.org/10.1090/s0002-9939-09-10124-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Kitano, Teruaki. "Johnson's homomorphisms of subgroups of the mapping class group, the Magnus expansion and Massey higher products of mapping tori". Topology and its Applications 69, n.º 2 (abril de 1996): 165–72. http://dx.doi.org/10.1016/0166-8641(95)00077-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

UEMURA, Takeshi. "Morita-Mumford classes on finite cyclic subgroups of the mapping class group of closed surfaces". Hokkaido Mathematical Journal 28, n.º 3 (fevereiro de 1999): 597–611. http://dx.doi.org/10.14492/hokmj/1351001239.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia