Siga este link para ver outros tipos de publicações sobre o tema: Many-body methods.

Artigos de revistas sobre o tema "Many-body methods"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Many-body methods".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Schäfer, T., C. W. Kao e S. R. Cotanch. "Many body methods and effective field theory". Nuclear Physics A 762, n.º 1-2 (novembro de 2005): 82–101. http://dx.doi.org/10.1016/j.nuclphysa.2005.08.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Stewart, I. "Symmetry methods in collisionless many-body problems". Journal of Nonlinear Science 6, n.º 6 (novembro de 1996): 543–63. http://dx.doi.org/10.1007/bf02434056.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

CARDY, JOHN. "EXACT RESULTS FOR MANY-BODY PROBLEMS USING FEW-BODY METHODS". International Journal of Modern Physics B 20, n.º 19 (30 de julho de 2006): 2595–602. http://dx.doi.org/10.1142/s0217979206035072.

Texto completo da fonte
Resumo:
Recently there has been developed a new approach to the study of critical quantum systems in 1+1 dimensions which reduces them to problems in one-dimensional Brownian motion. This goes under the name of stochastic, or Schramm, Loewner Evolution (SLE). I review some of the recent progress in this area, from the point of view of many-body theory. Connections to random matrices also emerge.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kaldor, Uzi. "Multireference many-body methods. Perspective on "Linked-cluster expansions for the nuclear many-body problem"". Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 103, n.º 3-4 (9 de fevereiro de 2000): 276–77. http://dx.doi.org/10.1007/s002149900014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Viviani, M. "Few- and many-body methods in nuclear physics". European Physical Journal A 31, n.º 4 (março de 2007): 429–34. http://dx.doi.org/10.1140/epja/i2006-10263-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Drut, Joaquín E., e Amy N. Nicholson. "Lattice methods for strongly interacting many-body systems". Journal of Physics G: Nuclear and Particle Physics 40, n.º 4 (12 de março de 2013): 043101. http://dx.doi.org/10.1088/0954-3899/40/4/043101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Pulay, P., e S. Sæbø. "Variational CEPA: Comparison with different many-body methods". Chemical Physics Letters 117, n.º 1 (maio de 1985): 37–41. http://dx.doi.org/10.1016/0009-2614(85)80400-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Nieves, J. "Quantum field theoretical methods in many body systems". Czechoslovak Journal of Physics 46, n.º 7-8 (julho de 1996): 673–720. http://dx.doi.org/10.1007/bf01692562.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Lewin, Mathieu. "Geometric methods for nonlinear many-body quantum systems". Journal of Functional Analysis 260, n.º 12 (junho de 2011): 3535–95. http://dx.doi.org/10.1016/j.jfa.2010.11.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gutfreund, H. "Applications of many body methods to large molecules". Journal of Polymer Science Part C: Polymer Symposia 29, n.º 1 (7 de março de 2007): 95–108. http://dx.doi.org/10.1002/polc.5070290113.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Sapirstein, J. "Theoretical methods for the relativistic atomic many-body problem". Reviews of Modern Physics 70, n.º 1 (1 de janeiro de 1998): 55–76. http://dx.doi.org/10.1103/revmodphys.70.55.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Anghel, Dragos Victor, Doru Sabin Delion e Gheorghe Sorin Paraoanu. "Advanced many-body and statistical methods in mesoscopic systems". Journal of Physics: Conference Series 338 (27 de fevereiro de 2012): 011001. http://dx.doi.org/10.1088/1742-6596/338/1/011001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Theodossiades, S., M. Teodorescu e H. Rahnejat. "From multi-body to many-body dynamics". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, n.º 12 (21 de outubro de 2009): 2835–47. http://dx.doi.org/10.1243/09544062jmes1688.

Texto completo da fonte
Resumo:
This article provides a brief historical review of multi-body dynamics analysis, initiated by the Newtonian axioms through constrained ( removed degrees of freedom) Lagrangian dynamics or restrained ( resisted degrees of freedom) Newton—Euler formulation. It provides a generic formulation method, based on system dynamics in a reduced configuration space, which encompasses both the aforementioned methods and is applicable to any cluster of material points. A detailed example is provided to show the integration of other physical phenomena such as flexibility and acoustic wave propagation into multi-body dynamics analysis. It is shown that in the scale of minutiae, when the action potentials deviate from Newtonian laws, the forces are often described by empirical or stochastic functions of separation and the medium of interactions. These make for complex analyses and distinguish a host of many body problems from Newtonian laws of motion. A simple example is provided to demonstrate this. It is suggested that unification of many-body analysis with that of multi-body dynamics is incumbent on the fundamental understanding of interaction potentials at close separations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Doran, Alexander E., e So Hirata. "Convergence acceleration of Monte Carlo many-body perturbation methods by using many control variates". Journal of Chemical Physics 153, n.º 9 (7 de setembro de 2020): 094108. http://dx.doi.org/10.1063/5.0020584.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Botti, Silvana, David Kammerlander e Miguel A. L. Marques. "Band structures of Cu2ZnSnS4 and Cu2ZnSnSe4 from many-body methods". Applied Physics Letters 98, n.º 24 (13 de junho de 2011): 241915. http://dx.doi.org/10.1063/1.3600060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Sekino, Hideo, e Rodney J. Bartlett. "Nuclear spin–spin coupling constants evaluated using many body methods". Journal of Chemical Physics 85, n.º 7 (outubro de 1986): 3945–49. http://dx.doi.org/10.1063/1.450916.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Salter, E. A., Gary W. Trucks e Rodney J. Bartlett. "Analytic energy derivatives in many‐body methods. I. First derivatives". Journal of Chemical Physics 90, n.º 3 (fevereiro de 1989): 1752–66. http://dx.doi.org/10.1063/1.456069.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Salter, E. A., e Rodney J. Bartlett. "Analytic energy derivatives in many‐body methods. II. Second derivatives". Journal of Chemical Physics 90, n.º 3 (fevereiro de 1989): 1767–73. http://dx.doi.org/10.1063/1.456070.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Quiroz, D. A. Amor, P. O. Hess, O. Civitarese e T. Yépez-Martínez. "QCD at low energy: The use of many-body methods". Journal of Physics: Conference Series 639 (14 de setembro de 2015): 012014. http://dx.doi.org/10.1088/1742-6596/639/1/012014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Cole, Samuel J., George D. Purvis e Rodney J. Bartlett. "Singlet-triplet energy gap in methylene using many-body methods". Chemical Physics Letters 113, n.º 3 (janeiro de 1985): 271–74. http://dx.doi.org/10.1016/0009-2614(85)80257-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Solovyev, I. V. "Combining DFT and many-body methods to understand correlated materials". Journal of Physics: Condensed Matter 20, n.º 29 (26 de junho de 2008): 293201. http://dx.doi.org/10.1088/0953-8984/20/29/293201.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Sekino, Hideo, e Rodney J. Bartlett. "Spin density of radicals by finite field many‐body methods". Journal of Chemical Physics 82, n.º 9 (maio de 1985): 4225–29. http://dx.doi.org/10.1063/1.448837.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Pausch, R., M. Thies e V. L. Dolman. "Solving the Gross-Neveu model with relativistic many-body methods". Zeitschrift f�r Physik A Hadrons and Nuclei 338, n.º 4 (dezembro de 1991): 441–53. http://dx.doi.org/10.1007/bf01295773.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Parra-Murillo, Carlos A., Javier Madroñero e Sandro Wimberger. "Exact numerical methods for a many-body Wannier–Stark system". Computer Physics Communications 186 (janeiro de 2015): 19–30. http://dx.doi.org/10.1016/j.cpc.2014.09.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Zakrzewski, Vyacheslav G., e Wolfgang von Niessen. "Vectorizable algorithm for green function and many-body perturbation methods". Journal of Computational Chemistry 14, n.º 1 (janeiro de 1993): 13–18. http://dx.doi.org/10.1002/jcc.540140105.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Keiter, H., e S. Kilić. "Brillouin-Wigner and Feenberg perturbation methods in many-body theory". Annalen der Physik 508, n.º 7 (31 de agosto de 2010): 608–24. http://dx.doi.org/10.1002/andp.2065080705.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Song, Jinlin, Qiang Cheng, Bo Zhang, Lu Lu, Xinping Zhou, Zixue Luo e Run Hu. "Many-body near-field radiative heat transfer: methods, functionalities and applications". Reports on Progress in Physics 84, n.º 3 (1 de março de 2021): 036501. http://dx.doi.org/10.1088/1361-6633/abe52b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Vekić, M., e S. R. White. "Determinantal and worldline quantum Monte Carlo methods for many-body systems". Physical Review B 47, n.º 24 (15 de junho de 1993): 16131–40. http://dx.doi.org/10.1103/physrevb.47.16131.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Hirata, So, e Kiyoshi Yagi. "Predictive electronic and vibrational many-body methods for molecules and macromolecules". Chemical Physics Letters 464, n.º 4-6 (outubro de 2008): 123–34. http://dx.doi.org/10.1016/j.cplett.2008.07.087.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Zhang, Juncheng Harry, Timothy C. Ricard, Cody Haycraft e Srinivasan S. Iyengar. "Weighted-Graph-Theoretic Methods for Many-Body Corrections within ONIOM: Smooth AIMD and the Role of High-Order Many-Body Terms". Journal of Chemical Theory and Computation 17, n.º 5 (23 de abril de 2021): 2672–90. http://dx.doi.org/10.1021/acs.jctc.0c01287.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

KUO, T. T. S., e YIHARN TZENG. "AN INTRODUCTORY GUIDE TO GREEN’S FUNCTION METHODS IN NUCLEAR MANY-BODY PROBLEMS". International Journal of Modern Physics E 03, n.º 02 (junho de 1994): 523–89. http://dx.doi.org/10.1142/s0218301394000140.

Texto completo da fonte
Resumo:
We present an elementary and fairly detailed review of several Green’s function methods for treating nuclear and other many-body systems. We first treat the single-particle Green’s function, by way of which some details concerning linked diagram expansion, rules for evaluating Green’s function diagrams and solution of the Dyson’s integral equation for Green’s function are exhibited. The particle-particle hole-hole (pphh) Green’s function is then considered, and a specific time-blocking technique is discussed. This technique enables us to have a one-frequency Dyson’s equation for the pphh and similarly for other Green’s functions, thus considerably facilitating their calculation. A third type of Green’s function considered is the particle-hole Green’s function. RPA and high order RPA are treated, along with examples for setting up particle-hole RPA equations. A general method for deriving a model-space Dyson’s equation for Green’s functions is discussed. We also discuss a method for determining the normalization of Green’s function transition amplitudes based on its vertex function. Some applications of Green’s function methods to nuclear structure and recent deep inelastic lepton-nucleus scattering are addressed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Jaschke, Daniel, Simone Montangero e Lincoln D. Carr. "One-dimensional many-body entangled open quantum systems with tensor network methods". Quantum Science and Technology 4, n.º 1 (6 de novembro de 2018): 013001. http://dx.doi.org/10.1088/2058-9565/aae724.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Bischoff, Florian A. "Regularizing the molecular potential in electronic structure calculations. II. Many-body methods". Journal of Chemical Physics 141, n.º 18 (14 de novembro de 2014): 184106. http://dx.doi.org/10.1063/1.4901022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Prokopenya, A. N. "Hamiltonian normalization in the restricted many-body problem by computer algebra methods". Programming and Computer Software 38, n.º 3 (25 de maio de 2012): 156–66. http://dx.doi.org/10.1134/s0361768812030048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Ng, Betty, e D. J. Newman. "Many‐body crystal field calculations. I. Methods of computation and perturbation expansion". Journal of Chemical Physics 87, n.º 12 (15 de dezembro de 1987): 7096–109. http://dx.doi.org/10.1063/1.453354.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Doran, Alexander E., e So Hirata. "Convergence acceleration of Monte Carlo many-body perturbation methods by direct sampling". Journal of Chemical Physics 153, n.º 10 (14 de setembro de 2020): 104112. http://dx.doi.org/10.1063/5.0020583.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Sun, Jun-Qiang, e Rodney J. Bartlett. "Convergence of many-body perturbation methods with lattice summations in extended systems". Journal of Chemical Physics 106, n.º 13 (abril de 1997): 5554–63. http://dx.doi.org/10.1063/1.473577.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Dinerman, Julie, e Lea F. Santos. "Manipulation of the dynamics of many-body systems via quantum control methods". New Journal of Physics 12, n.º 5 (28 de maio de 2010): 055025. http://dx.doi.org/10.1088/1367-2630/12/5/055025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Levin, F. S. "Many-body scattering tehory methods as a basis for moelcular structure calculations". International Journal of Quantum Chemistry 14, S12 (18 de junho de 2009): 109–30. http://dx.doi.org/10.1002/qua.560140810.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Larder, B., D. O. Gericke, S. Richardson, P. Mabey, T. G. White e G. Gregori. "Fast nonadiabatic dynamics of many-body quantum systems". Science Advances 5, n.º 11 (novembro de 2019): eaaw1634. http://dx.doi.org/10.1126/sciadv.aaw1634.

Texto completo da fonte
Resumo:
Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. However, there remain many problems that are intractable for existing methods. In particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons and ions at finite temperature. Here, we address this shortfall with a new approach to modeling many-body quantum systems. On the basis of the Bohmian trajectory formalism, our new method treats the full particle dynamics with a considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled electron-ion systems without using the adiabatic Born-Oppenheimer approximation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

FURNSTAHL, R. J. "RECENT DEVELOPMENTS IN THE NUCLEAR MANY-BODY PROBLEM". International Journal of Modern Physics B 17, n.º 28 (10 de novembro de 2003): 5111–26. http://dx.doi.org/10.1142/s0217979203020247.

Texto completo da fonte
Resumo:
The study of quantum chromodynamics (QCD) over the past quarter century has had relatively little impact on the traditional approach to the low-energy nuclear many-body problem. Recent developments are changing this situation. New experimental capabilities and theoretical approaches are opening windows into the richness of many-body phenomena in QCD. A common theme is the use of effective field theory (EFT) methods, which exploit the separation of scales in physical systems. At low energies, effective field theory can explain how existing phenomenology emerges from QCD and how to refine it systematically. More generally, the application of EFT methods to many-body problems promises insight into the analytic structure of observables, the identification of new expansion parameters, and a consistent organisation of many-body corrections, with reliable error estimates.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Wu, Dian, Riccardo Rossi, Filippo Vicentini, Nikita Astrakhantsev, Federico Becca, Xiaodong Cao, Juan Carrasquilla et al. "Variational benchmarks for quantum many-body problems". Science 386, n.º 6719 (18 de outubro de 2024): 296–301. http://dx.doi.org/10.1126/science.adg9774.

Texto completo da fonte
Resumo:
The continued development of computational approaches to many-body ground-state problems in physics and chemistry calls for a consistent way to assess its overall progress. In this work, we introduce a metric of variational accuracy, the V-score, obtained from the variational energy and its variance. We provide an extensive curated dataset of variational calculations of many-body quantum systems, identifying cases where state-of-the-art numerical approaches show limited accuracy and future algorithms or computational platforms, such as quantum computing, could provide improved accuracy. The V-score can be used as a metric to assess the progress of quantum variational methods toward a quantum advantage for ground-state problems, especially in regimes where classical verifiability is impossible.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

PANDHARIPANDE, V. R. "RECENT DEVELOPMENTS IN THE NUCLEAR MANY-BODY PROBLEM". International Journal of Modern Physics B 13, n.º 05n06 (10 de março de 1999): 543–58. http://dx.doi.org/10.1142/s0217979299000448.

Texto completo da fonte
Resumo:
We review recent developments in a few selected areas of the many-body theory of nuclei and neutron stars. The chosen topics are (i) femtometer toroidal structures in nuclei; (ii) modern models of nuclear forces; (iii) advances in the application of quantum Monte Carlo methods to nuclei; (iv) relativistic boost corrections to nuclear forces; (v) dense nucleon matter; (vi) kaon condensation in neutron star matter; and (vii) the nature of the transition from nucleon to quark matter at high density.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Ciardi, Matteo, Tommaso Macrì e Fabio Cinti. "Zonal Estimators for Quasiperiodic Bosonic Many-Body Phases". Entropy 24, n.º 2 (12 de fevereiro de 2022): 265. http://dx.doi.org/10.3390/e24020265.

Texto completo da fonte
Resumo:
In this work, we explore the relevant methodology for the investigation of interacting systems with contact interactions, and we introduce a class of zonal estimators for path-integral Monte Carlo methods, designed to provide physical information about limited regions of inhomogeneous systems. We demonstrate the usefulness of zonal estimators by their application to a system of trapped bosons in a quasiperiodic potential in two dimensions, focusing on finite temperature properties across a wide range of values of the potential. Finally, we comment on the generalization of such estimators to local fluctuations of the particle numbers and to magnetic ordering in multi-component systems, spin systems, and systems with nonlocal interactions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Fajen, O. Jonathan, e Kurt R. Brorsen. "Multicomponent MP4 and the inclusion of triple excitations in multicomponent many-body methods". Journal of Chemical Physics 155, n.º 23 (21 de dezembro de 2021): 234108. http://dx.doi.org/10.1063/5.0071423.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Amor-Quiroz, D. A., T. Yépez-Martínez, P. O. Hess, O. Civitarese e A. Weber. "Low-energy meson spectrum from a QCD approach based on many-body methods". International Journal of Modern Physics E 26, n.º 12 (dezembro de 2017): 1750082. http://dx.doi.org/10.1142/s0218301317500823.

Texto completo da fonte
Resumo:
The Tamm–Dancoff Approximation (TDA) and Random Phase Approximation (RPA) many-body methods are applied to an effective Quantum Chromodynamics (QCD) Hamiltonian in the Coulomb gauge. The gluon effects in the low-energy domain are accounted for by the Instantaneous color-Coulomb Interaction between color-charge densities, approximated by the sum of a Coulomb ([Formula: see text]) and a confining linear ([Formula: see text]) potential. We use the eigenfunctions of the harmonic oscillator as a basis for the quantization of the quark fields, and discuss how suitable this basis is in various steps of the calculation. We show that the TDA results already reproduce the gross-structure of the light-flavored meson states. The pion-like state, which in the RPA description is a highly collective state, is in better agreement with the experimental value. The results are related to other nonperturbative treatments and compared to experimental data. We discuss the advantages of the present approach.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Brandenburg, Jan Gerit, Andrea Zen, Martin Fitzner, Benjamin Ramberger, Georg Kresse, Theodoros Tsatsoulis, Andreas Grüneis, Angelos Michaelides e Dario Alfè. "Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods". Journal of Physical Chemistry Letters 10, n.º 3 (7 de janeiro de 2019): 358–68. http://dx.doi.org/10.1021/acs.jpclett.8b03679.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Fedorov, Dmitri G., Naoya Asada, Isao Nakanishi e Kazuo Kitaura. "The Use of Many-Body Expansions and Geometry Optimizations in Fragment-Based Methods". Accounts of Chemical Research 47, n.º 9 (21 de agosto de 2014): 2846–56. http://dx.doi.org/10.1021/ar500224r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Hartono, Albert, Qingda Lu, Thomas Henretty, Sriram Krishnamoorthy, Huaijian Zhang, Gerald Baumgartner, David E. Bernholdt et al. "Performance Optimization of Tensor Contraction Expressions for Many-Body Methods in Quantum Chemistry†". Journal of Physical Chemistry A 113, n.º 45 (12 de novembro de 2009): 12715–23. http://dx.doi.org/10.1021/jp9051215.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Auer, Alexander A., Gerald Baumgartner, David E. Bernholdt, Alina Bibireata, Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao et al. "Automatic code generation for many-body electronic structure methods: the tensor contraction engine‡‡". Molecular Physics 104, n.º 2 (20 de janeiro de 2006): 211–28. http://dx.doi.org/10.1080/00268970500275780.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia