Literatura científica selecionada sobre o tema "Many-body methods"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Many-body methods".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Many-body methods"
Schäfer, T., C. W. Kao e S. R. Cotanch. "Many body methods and effective field theory". Nuclear Physics A 762, n.º 1-2 (novembro de 2005): 82–101. http://dx.doi.org/10.1016/j.nuclphysa.2005.08.006.
Texto completo da fonteStewart, I. "Symmetry methods in collisionless many-body problems". Journal of Nonlinear Science 6, n.º 6 (novembro de 1996): 543–63. http://dx.doi.org/10.1007/bf02434056.
Texto completo da fonteCARDY, JOHN. "EXACT RESULTS FOR MANY-BODY PROBLEMS USING FEW-BODY METHODS". International Journal of Modern Physics B 20, n.º 19 (30 de julho de 2006): 2595–602. http://dx.doi.org/10.1142/s0217979206035072.
Texto completo da fonteKaldor, Uzi. "Multireference many-body methods. Perspective on "Linked-cluster expansions for the nuclear many-body problem"". Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 103, n.º 3-4 (9 de fevereiro de 2000): 276–77. http://dx.doi.org/10.1007/s002149900014.
Texto completo da fonteViviani, M. "Few- and many-body methods in nuclear physics". European Physical Journal A 31, n.º 4 (março de 2007): 429–34. http://dx.doi.org/10.1140/epja/i2006-10263-9.
Texto completo da fonteDrut, Joaquín E., e Amy N. Nicholson. "Lattice methods for strongly interacting many-body systems". Journal of Physics G: Nuclear and Particle Physics 40, n.º 4 (12 de março de 2013): 043101. http://dx.doi.org/10.1088/0954-3899/40/4/043101.
Texto completo da fontePulay, P., e S. Sæbø. "Variational CEPA: Comparison with different many-body methods". Chemical Physics Letters 117, n.º 1 (maio de 1985): 37–41. http://dx.doi.org/10.1016/0009-2614(85)80400-0.
Texto completo da fonteNieves, J. "Quantum field theoretical methods in many body systems". Czechoslovak Journal of Physics 46, n.º 7-8 (julho de 1996): 673–720. http://dx.doi.org/10.1007/bf01692562.
Texto completo da fonteLewin, Mathieu. "Geometric methods for nonlinear many-body quantum systems". Journal of Functional Analysis 260, n.º 12 (junho de 2011): 3535–95. http://dx.doi.org/10.1016/j.jfa.2010.11.017.
Texto completo da fonteGutfreund, H. "Applications of many body methods to large molecules". Journal of Polymer Science Part C: Polymer Symposia 29, n.º 1 (7 de março de 2007): 95–108. http://dx.doi.org/10.1002/polc.5070290113.
Texto completo da fonteTeses / dissertações sobre o assunto "Many-body methods"
Wilson, Mark. "Many-body effects in ionic systems". Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:3c66daa2-5318-40d2-a445-15296d598a57.
Texto completo da fonteSteiger, Don. "Numerical n-body methods in computational chemistry /". free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924930.
Texto completo da fonteDinh, Thi Hanh Physics Faculty of Science UNSW. "Application of many-body theory methods to atomic problems". Publisher:University of New South Wales. Physics, 2009. http://handle.unsw.edu.au/1959.4/43734.
Texto completo da fonteGerster, Matthias [Verfasser]. "Tensor network methods for quantum many-body simulations / Matthias Gerster". Ulm : Universität Ulm, 2021. http://d-nb.info/1233737406/34.
Texto completo da fonteRichard, Ryan. "Increasing the computational efficiency of ab initio methods with generalized many-body expansions". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385570237.
Texto completo da fonteMolnar, Andras [Verfasser], e Jan von [Akademischer Betreuer] Delft. "Tensor Network methods in many-body physics / Andras Molnar ; Betreuer: Jan von Delft". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1185979328/34.
Texto completo da fonteBlandon, Juan. "DEVELOPMENT OF THEORETICAL AND COMPUTATIONAL METHODS FOR FEW-BODY PROCESSES IN ULTRACOLD QUANTUM GASES". Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2881.
Texto completo da fonteM.S.
Department of Physics
Sciences
Physics
Motta, M. "DYNAMICAL PROPERTIES OF MANY--BODY SYSTEMS FROM CONFIGURATIONAL AND DETERMINANTAL QUANTUM MONTE CARLO METHODS". Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/345455.
Texto completo da fonteHoltz, Susan Lady. "Liouville resolvent methods applied to highly correlated systems". Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/49795.
Texto completo da fonteScalesi, Alberto. "On the characterization of nuclear many-body correlations in the ab initio approach". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP070.
Texto completo da fonteThe 'ab initio' branch of nuclear structure theory has traditionally focused on the study of light to mid-mass nuclei and primarily spherical systems. Current developments aim at extending this focus to heavy-mass nuclei and doubly open-shell systems. The study of such systems is qualitatively and quantitatively challenging. Hence, different strategies must be designed to efficiently capture the dominant correlations that most significantly impact the observables of interest. While in principle exact methods exist to solve the non-relativistic Schrödinger equation for a given Nuclear Hamiltonian, practical limitations in numerical simulations make such an approach impossible for most isotopes. This calls for a hierarchical characterization of the main correlations at play in the various nuclear systems. Most ab initio techniques rely on an initial mean-field calculation, typically carried out via the Hartree-Fock (HF) method, which provide a reference state containing the principal part of the correlations contributing to bulk nuclear properties. When tackling open-shell systems, it has been proven particularly convenient to break symmetries at mean-field level to effectively include the static correlations arising in superfluid (via HF-Bogoliubov theory, HFB) or deformed nuclei (via deformed HF, dHF). The present work contributes to this research line by proposing end exploring novel symmetry-breaking many-body techniques applicable to all nuclear systems. The simplest ab initio technique that can be applied on top of the mean-field is many-body perturbation theory. The first result of this work is the demonstration that symmetry-breaking perturbation theory (dBMBPT) based on state-of-the-art nuclear interactions can already qualitatively describe the main nuclear observables, such as ground-state energies and radii. Given that perturbation theory constitutes a cheap and efficient way to perform systematic studies of different nuclei across the nuclear chart, a part of the present work is dedicated to pave the way to such large-scale calculations. In order to push many-body calculations to higher precision, a novel ab initio technique is then introduced, namely the deformed Dyson Self-Consistent Green's function (dDSCGF) method. Such a non-perturbative (i.e., resumming an infinite number of perturbation-theory contributions) approach allows one to compute a wide variety of quantities of interest, both for the ground state of the targeted nucleus and for excited states of neighbouring systems. In addition, it naturally bridges to nuclear reactions giving access to, e.g., the evaluation of optical potentials. Given the high computational cost of non-perturbative many-body methods, the final section introduces possible approaches to make such calculations more efficient. In particular, the Natural Orbital basis is introduced and investigated in the context of deformed systems. Eventually, it is proven that this technique enables the use of much smaller basis sets, thus significantly decreasing the final cost of numerical simulations and enlarging their reach. All together, the developments reported in the present work open up new and promising possibilities for the ab initio description of heavy-mass and open-shell nuclei
Livros sobre o assunto "Many-body methods"
Kaldor, U., ed. Many-Body Methods in Quantum Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93424-7.
Texto completo da fontePaul, Gibbon, ed. Many-body tree methods in physics. Cambridge: Cambridge University Press, 1996.
Encontre o texto completo da fonteHubac, Ivan, e Stephen Wilson. Brillouin-Wigner Methods for Many-Body Systems. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3373-4.
Texto completo da fonte1950-, Wilson S. (Stephen), ed. Brillouin-Wigner methods for many-body systems. Dordrecht: Springer, 2010.
Encontre o texto completo da fonteSchirmer, Jochen. Many-Body Methods for Atoms, Molecules and Clusters. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93602-4.
Texto completo da fonteD, Brewer William, e SpringerLink (Online service), eds. Fundamentals of Many-body Physics: Principles and Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Encontre o texto completo da fonteNATO Advanced Study Institute on Dynamics : Models and Kinetic Methods for Non-equilibrium Many Body Systems (1998 Lorentz Institute, Leiden University). Dynamics: Models and kinetic methods for non-equilibrium many body systems. Dordrecht: Kluwer Academic Publishers, 2000.
Encontre o texto completo da fonteMukherjee, Debashis, ed. Applied Many-Body Methods in Spectroscopy and Electronic Structure. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4757-9256-0.
Texto completo da fonteKarkheck, John. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002.
Encontre o texto completo da fonteKarkheck, John, ed. Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-011-4365-3.
Texto completo da fonteCapítulos de livros sobre o assunto "Many-body methods"
Ceperley, D. M., e M. H. Kalos. "Quantum Many-Body Problems". In Monte Carlo Methods in Statistical Physics, 145–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82803-4_4.
Texto completo da fonteQuiney, Harry M. "Relativistic Many-Body Perturbation Theory". In Methods in Computational Chemistry, 227–78. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0711-2_5.
Texto completo da fonteTrugman, S. A. "General Many-Body Systems". In Applications of Statistical and Field Theory Methods to Condensed Matter, 253–63. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5763-6_22.
Texto completo da fonteMartin, Philippe A., e François Rothen. "Perturbative Methods in Many-Body Problems". In Many-Body Problems and Quantum Field Theory, 393–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08490-8_10.
Texto completo da fonteMartin, Philippe A., e François Rothen. "Perturbative Methods in Many-Body Problems". In Many-Body Problems and Quantum Field Theory, 401–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04894-8_10.
Texto completo da fonteMontangero, Simone. "Many-Body Quantum Systems at Equilibrium". In Introduction to Tensor Network Methods, 97–108. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01409-4_7.
Texto completo da fonteBirman, Joseph L., e Allan I. Solomon. "Dynamic Symmetry in Many-Body Problem". In Group Theoretical Methods in Physics. Volume II, 61–69. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003580850-4.
Texto completo da fonteMartin, Philippe A., e François Rothen. "Perturbative Methods in Field Theory". In Many-Body Problems and Quantum Field Theory, 325–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08490-8_9.
Texto completo da fonteMartin, Philippe A., e François Rothen. "Perturbative Methods in Field Theory". In Many-Body Problems and Quantum Field Theory, 333–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04894-8_9.
Texto completo da fonteHubač, Ivan, e Stephen Wilson. "Brillouin-Wigner Methods for Many-Body Systems". In Brillouin-Wigner Methods for Many-Body Systems, 133–89. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3373-4_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Many-body methods"
Markussen, Troels, Petr A. Khomyakov, Brecht Verstichel, Anders Blom e Rasmus Faber. "Band Alignment in GAA Nanosheet Structures from Density Dependent Hybrid Functional and Many-Body GW Methods". In 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 01–04. IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10732914.
Texto completo da fonteCARDY, JOHN. "EXACT RESULTS FOR MANY-BODY PROBLEMS USING FEW-BODY METHODS". In Proceedings of the 12th International Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772893_0005.
Texto completo da fonteHoriuchi, H., M. Kamimura, H. Toki, Y. Fujiwara, M. Matsuo e Y. Sakuragi. "Innovative Computational Methods in Nuclear Many-Body Problems". In XVII RCNP International Symposium. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528405.
Texto completo da fonteSEDRAKIAN, ARMEN, e JOHN W. CLARK. "MANY-BODY METHODS FOR NUCLEAR SYSTEMS AT SUBNUCLEAR DENSITIES". In Proceedings of the 14th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812779885_0017.
Texto completo da fonteDas, M. P. "DENSITY FUNCTIONAL THEORY: MANY-BODY EFFECTS WITHOUT TEARS". In Proceedings of the Miniworkshop on “Methods of Electronic Structure Calculations” and Working Group on “Disordered Alloys”. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503778_0001.
Texto completo da fonteSchachenmayer, Johannes. "Exploring Quantum Many-Body Spin Dynamics with Truncated Wigner Methods". In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/laop.2016.ltu5b.4.
Texto completo da fonte"Preface: Symmetries and Order: Algebraic Methods in Many-Body Systems". In Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124570.
Texto completo da fonte"Dedication: Symmetries and Order: Algebraic Methods in Many-Body Systems". In Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124571.
Texto completo da fonteCejnar, Pavel, Pavel Stránský, Michal Kloc e Michal Macek. "Static vs. dynamic phases of quantum many-body systems". In Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5124589.
Texto completo da fonteDraayer, J. P., K. D. Sviratcheva, C. Bahri e A. I. Georgieva. "On the Physical Significance of q-deformation in Many-body Physics". In Proceedings of the 23rd International Conference of Differential Geometric Methods in Theoretical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772527_0012.
Texto completo da fonteRelatórios de organizações sobre o assunto "Many-body methods"
Bartlett, Rodney J. Molecular Interactions and Properties with Many-Body Methods. Fort Belvoir, VA: Defense Technical Information Center, abril de 1990. http://dx.doi.org/10.21236/ada222631.
Texto completo da fonteBartlett, Rodney J. Development of Many-Body Methods for Flame Chemistry and Large Molecule Applications. Fort Belvoir, VA: Defense Technical Information Center, maio de 1987. http://dx.doi.org/10.21236/ada184451.
Texto completo da fonteMillis, Andrew. Many Body Methods from Chemistry to Physics: Novel Computational Techniques for Materials-Specific Modelling: A Computational Materials Science and Chemistry Network. Office of Scientific and Technical Information (OSTI), novembro de 2016. http://dx.doi.org/10.2172/1332662.
Texto completo da fonteUnderwood, H., Madison Hand, Donald Leopold, Madison Hand, Donald Leopold e H. Underwood. Abundance and distribution of white-tailed deer on First State National Historical Park and surrounding lands. National Park Service, 2024. http://dx.doi.org/10.36967/2305428.
Texto completo da fonteRuprah, Inder J., e Luis Marcano. Does Technical Assistance Matter?: An Impact Evaluation Approach to Estimate its Value Added. Inter-American Development Bank, janeiro de 2009. http://dx.doi.org/10.18235/0011138.
Texto completo da fonteSappington, Jayne, Esther De León, Sara Schumacher, Kimberly Vardeman, Donell Callender, Marina Oliver, Hillary Veeder e Laura Heinz. Library Impact Research Report: Educating and Empowering a Diverse Student Body: Supporting Diversity, Equity, and Inclusion Research through Library Collections. Association of Research Libraries, julho de 2022. http://dx.doi.org/10.29242/report.texastech2022.
Texto completo da fonteHalker Singh, Rashmi B., Juliana H. VanderPluym, Allison S. Morrow, Meritxell Urtecho, Tarek Nayfeh, Victor D. Torres Roldan, Magdoleen H. Farah et al. Acute Treatments for Episodic Migraine. Agency for Healthcare Research and Quality (AHRQ), dezembro de 2020. http://dx.doi.org/10.23970/ahrqepccer239.
Texto completo da fonteSharp, Sarah M., Michael J. Moore, Craig A. Harms, Sarah M. Wilkin, W. Brian Sharp, Kristen M. Patchett e Kathryn S. Rose. Report of the live large whale stranding response workshop. Woods Hole Oceanographic Institution, novembro de 2024. http://dx.doi.org/10.1575/1912/70889.
Texto completo da fonteBeason, Scott, Taylor Kenyon, Robert Jost e Laurent Walker. Changes in glacier extents and estimated changes in glacial volume at Mount Rainier National Park, Washington, USA from 1896 to 2021. National Park Service, junho de 2023. http://dx.doi.org/10.36967/2299328.
Texto completo da fonteKeshav, Dr Geetha, Dr Suwaibah Fatima Samer, Dr Salman Haroon e Dr Mohammed Abrar Hassan. TO STUDY THE CORRELATION OF BMI WITH ABO BLOOD GROUP AND CARDIOVASCULAR RISK AMONG MEDICAL STUDENTS. World Wide Journals, fevereiro de 2023. http://dx.doi.org/10.36106/ijar/2405523.
Texto completo da fonte