Literatura científica selecionada sobre o tema "Mandelbrot sets"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Mandelbrot sets".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Mandelbrot sets"
LIU, XIANG-DONG, ZHI-JIE LI, XUE-YE ANG e JIN-HAI ZHANG. "MANDELBROT AND JULIA SETS OF ONE-PARAMETER RATIONAL FUNCTION FAMILIES ASSOCIATED WITH NEWTON'S METHOD". Fractals 18, n.º 02 (junho de 2010): 255–63. http://dx.doi.org/10.1142/s0218348x10004841.
Texto completo da fonteMu, Beining. "Fuzzy Julia Sets and Fuzzy Superior Julia Sets". Highlights in Science, Engineering and Technology 72 (15 de dezembro de 2023): 375–80. http://dx.doi.org/10.54097/5c5hp748.
Texto completo da fonteJha, Ketan, e Mamta Rani. "Control of Dynamic Noise in Transcendental Julia and Mandelbrot Sets by Superior Iteration Method". International Journal of Natural Computing Research 7, n.º 2 (abril de 2018): 48–59. http://dx.doi.org/10.4018/ijncr.2018040104.
Texto completo da fonteDanca, Marius-F. "Mandelbrot Set as a Particular Julia Set of Fractional Order, Equipotential Lines and External Rays of Mandelbrot and Julia Sets of Fractional Order". Fractal and Fractional 8, n.º 1 (19 de janeiro de 2024): 69. http://dx.doi.org/10.3390/fractalfract8010069.
Texto completo da fonteTassaddiq, Asifa, Muhammad Tanveer, Muhammad Azhar, Waqas Nazeer e Sania Qureshi. "A Four Step Feedback Iteration and Its Applications in Fractals". Fractal and Fractional 6, n.º 11 (9 de novembro de 2022): 662. http://dx.doi.org/10.3390/fractalfract6110662.
Texto completo da fonteYan, De Jun, Xiao Dan Wei, Hong Peng Zhang, Nan Jiang e Xiang Dong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated from Complex Non-Analytic Iteration Fm(z)=z¯m+c". Applied Mechanics and Materials 347-350 (agosto de 2013): 3019–23. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.3019.
Texto completo da fonteKOZMA, ROBERT T., e ROBERT L. DEVANEY. "Julia sets converging to filled quadratic Julia sets". Ergodic Theory and Dynamical Systems 34, n.º 1 (21 de agosto de 2012): 171–84. http://dx.doi.org/10.1017/etds.2012.115.
Texto completo da fonteAl-Salami, Hassanein Q. "Some Properties of the Mandelbrot Sets M(Q_α)". JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 31, n.º 2 (29 de junho de 2023): 263–69. http://dx.doi.org/10.29196/jubpas.v31i2.4683.
Texto completo da fonteSekovanov, Valeriy S., Larisa B. Rybina e Kseniya Yu Strunkina. "The study of the frames of Mandelbrot sets of polynomials of the second degree as a means of developing the originality of students' thinking". Vestnik Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics, n.º 4 (2019): 193–99. http://dx.doi.org/10.34216/2073-1426-2019-25-4-193-199.
Texto completo da fonteWang, Feng Ying, Li Ming Du e Zi Yang Han. "The Construction for Generalized Mandelbrot Sets of the Frieze Group". Advanced Materials Research 756-759 (setembro de 2013): 2562–66. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.2562.
Texto completo da fonteTeses / dissertações sobre o assunto "Mandelbrot sets"
Tingen, Larry L. "The Julia and Mandelbrot sets for the Hurwitz zeta function". View electronic thesis (PDF), 2009. http://dl.uncw.edu/etd/2009-3/tingenl/larrytingen.pdf.
Texto completo da fonteJones, Rafe. "Galois martingales and the hyperbolic subset of the p-adic Mandelbrot set /". View online version; access limited to Brown University users, 2005. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3174623.
Texto completo da fonteTolmie, Julie. "Visualisation, navigation and mathematical perception : a visual notation for rational numbers mod 1". View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20020313.101505/index.html.
Texto completo da fontePoirier, Schmitz Alfredo. "Invariant measures on polynomial quadratic Julia sets with no interior". Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96022.
Texto completo da fonteEn este artículo caracterizamos medidas invariantes sobre conjuntos de Julia sin interior asociados con polinomios cuadráticos. Probamos que más allá de la medida armónica —la única par e invariante—, el resto son generadas por su parte impar.
Kuo, Li-Feng, e 郭立峰. "Mandelbrot Sets, Julia Sets and Their Algorithms". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/6n28d7.
Texto completo da fonte國立中央大學
數學系
107
In this thesis, we survey the big theme of fractals - Mandelbrot sets. We start to study Julia sets before study Mandelbrot sets, and the goal is generating figures of fractals and applying to arts. Hence, we introduce the definition and properties of Julia sets firstly, and use this theory to arrange some useful algorithms for generating the figures of Julia sets. After we survey Julia sets, we can study Mandelbrot sets, since the definition of Mandelbrot sets is all of the points such that the Julia set is onnected. However, we obtain the obstacle when generating andelbrot sets, that is, how to check the Julia set is connected or not? The answer of this question is - the fundamental theorem of Mandelbrot sets, we can generate the figures of Mandelbrot sets by this theorem. Finally, we give some examples of Mandelbrot sets and Julia sets, and introduce 3-dimensional Mandelbrot sets and Julia sets.
Fitzgibbon, Elizabeth Laura. "Rational maps: the structure of Julia sets from accessible Mandelbrot sets". Thesis, 2014. https://hdl.handle.net/2144/15111.
Texto completo da fonteHannah, Walter. "Internal rays of the Mandelbrot set". Thesis, 2006. http://www.ithaca.edu/hs/depts/math/docs/theses/whannahthesis.pdf.
Texto completo da fonteLauber, Arnd. "On the Stability of Julia Sets of Functions having Baker Domains". Doctoral thesis, 2004. http://hdl.handle.net/11858/00-1735-0000-0006-B3DE-F.
Texto completo da fonteLivros sobre o assunto "Mandelbrot sets"
Mandelbrot, Benoit B. Fractals and chaos: The Mandelbrot set and beyond. New York, NY: Springer, 2004.
Encontre o texto completo da fonteTomboulian, Sherryl. Indirect addressing and load balancing for faster solution to Mandelbrot Set on SIMD architectures. Hampton, Va: ICASE, 1989.
Encontre o texto completo da fonteBanaś, Marian. Analiza teoretyczna i badania właściwości zawiesin nieziarnistych w zastosowaniu do projektowsnia i eksploatacji wielostrumieniowych urządzeń sedymentacyjnych: Theoretical analysis and investigations of the properties of the non-grainy suspensions in terms to design and use of the lamella settling devices. Kraków: Wydawnictwa AGH, 2012.
Encontre o texto completo da fonteDevaney, Robert, ed. Complex Dynamical Systems: The Mathematics Behind the Mandelbrot and Julia Sets. Providence, Rhode Island: American Mathematical Society, 1995. http://dx.doi.org/10.1090/psapm/049.
Texto completo da fonte1948-, Devaney Robert L., e Branner Bodil, eds. Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets. Providence, R.I: American Mathematical Society, 1994.
Encontre o texto completo da fonte1945-, Stewart Ian, e Clarke Arthur Charles 1917-, eds. The colours of infinity: The beauty and power of fractals. [S.l.]: Clear Books, 2004.
Encontre o texto completo da fonteLesmoir-Gordon, Nigel. The colours of infinity: The beauty and power of fractals. London: Springer Verlag, 2010.
Encontre o texto completo da fonte1945-, Kauffman Louis H., e Sandin Daniel J, eds. Hypercomplex iterations: Distance estimation and higher dimensional fractals. River Edge, NJ: World Scientific, 2002.
Encontre o texto completo da fonteMilnor, John W. Dynamical systems (1984-2012). Editado por Bonifant Araceli 1963-. Providence, Rhode Island: American Mathematical Society, 2014.
Encontre o texto completo da fonteUniversal Mandelbrot Set: Beginning of the Story. World Scientific Publishing Co Pte Ltd, 2006.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Mandelbrot sets"
Agarwal, Ravi P., Kanishka Perera e Sandra Pinelas. "Julia and Mandelbrot Sets". In An Introduction to Complex Analysis, 316–20. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0195-7_49.
Texto completo da fonteKorsch, H. J., e H. J. Jodl. "Mandelbrot and Julia Sets". In Chaos, 227–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03866-6_11.
Texto completo da fonteKorsch, H. J., e H. J. Jodl. "Mandelbrot and Julia Sets". In Chaos, 227–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-02991-6_11.
Texto completo da fonteDouady, Adrien. "Julia Sets and the Mandelbrot Set". In The Beauty of Fractals, 161–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61717-1_13.
Texto completo da fonteReeve, Dominic E. "Mandelbrot, Julia Sets and Nonlinear Mappings". In Fractals and Chaos, 35–42. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3034-2_3.
Texto completo da fontePeitgen, Heinz-Otto, Hartmut Jürgens e Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets". In Fractals for the Classroom, 415–73. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4406-6_8.
Texto completo da fontePeitgen, Heinz-Otto, Hartmut Jürgens e Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets". In Chaos and Fractals, 841–901. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4740-9_15.
Texto completo da fontePeitgen, Heinz-Otto, Hartmut Jürgens e Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets". In Chaos and Fractals, 783–837. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/0-387-21823-8_15.
Texto completo da fonteMcClure, Mark. "Complex Dynamics:Julia Sets and the Mandelbrot Set". In Mathematica in Action, 277–300. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-75477-2_12.
Texto completo da fonteOchkov, Valery, Alan Stevens e Anton Tikhonov. "Iterations and Fractal Sets of Mandelbrot and Julia". In STEM Problems with Mathcad and Python, 263–91. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003228356-14.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Mandelbrot sets"
Kumar, Suthikshn. "Public Key Cryptographic System Using Mandelbrot Sets". In MILCOM 2006. IEEE, 2006. http://dx.doi.org/10.1109/milcom.2006.302396.
Texto completo da fonteDejun, Yan, Yang Rijing, Xin Huijie e Zheng Jiangchao. "Generalized Mandelbrot Sets and Julia Sets for Non-analytic Complex Maps". In 2010 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA). IEEE, 2010. http://dx.doi.org/10.1109/iwcfta.2010.42.
Texto completo da fonteYan, Dejun, Junxing Zhang, Nan Jiang e Lidong Wang. "General Mandelbrot Sets and Julia Sets Generated from Non-analytic Complex Iteration ⨍m(z)=z^n+c". In 2009 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA 2009). IEEE, 2009. http://dx.doi.org/10.1109/iwcfta.2009.89.
Texto completo da fonteSeytov, Sh J., N. B. Narziyev, A. I. Eshniyozov e S. N. Nishonov. "The algorithms for developing computer programs for the sets of Julia and Mandelbrot". In PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: (PTLICISIWS-2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0145456.
Texto completo da fonteYan, Dejun, Xiaodan Wei, Hongpeng Zhang, Nan Jiang e Xiangdong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated From Complex Non-Analytic Iteration Fm(Z)=Zm+c". In 2nd International Symposium on Computer, Communication, Control and Automation. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/isccca.2013.42.
Texto completo da fonteGanikhodzhayev, Rasul, e Shavkat Seytov. "An analytical description of mandelbrot and Julia sets for some multi-dimensional cubic mappings". In INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0058341.
Texto completo da fonteDawkins, Jeremy J., David M. Bevly e Robert L. Jackson. "Multiscale Terrain Characterization Using Fourier and Wavelet Transforms for Unmanned Ground Vehicles". In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2718.
Texto completo da fonteShahinpoor, Mohsen. "An Introduction to Smart Fractal Structures and Mechanisms". In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0160.
Texto completo da fonteMichopoulos, John G., e Athanasios Iliopoulos. "High Dimensional Full Inverse Characterization of Fractal Volumes". In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71050.
Texto completo da fonteMichopoulos, John G., e Athanasios Iliopoulos. "Complete High Dimensional Inverse Characterization of Fractal Surfaces". In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47784.
Texto completo da fonte