Artigos de revistas sobre o tema "Macrophages"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Macrophages".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Rodriguez, Eric, Frederic Boudard, Michele Mallié, Jean-Marie Bastide e Madeleine Bastide. "Murine macrophage elastolytic activity induced by Aspergillus fumigatus strains in vitro: evidence of the expression of two macrophage-induced protease genes". Canadian Journal of Microbiology 43, n.º 7 (1 de julho de 1997): 649–57. http://dx.doi.org/10.1139/m97-092.
Texto completo da fonteLu, Yufei, Leiming Guo e Gaofeng Ding. "PD1+ tumor associated macrophages predict poor prognosis of locally advanced esophageal squamous cell carcinoma". Future Oncology 15, n.º 35 (dezembro de 2019): 4019–30. http://dx.doi.org/10.2217/fon-2019-0519.
Texto completo da fonteHargarten, Jessica C., Tyler C. Moore, Thomas M. Petro, Kenneth W. Nickerson e Audrey L. Atkin. "Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration". Infection and Immunity 83, n.º 10 (20 de julho de 2015): 3857–64. http://dx.doi.org/10.1128/iai.00886-15.
Texto completo da fonteYadav, Mahesh, e Jeffrey S. Schorey. "The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria". Blood 108, n.º 9 (1 de novembro de 2006): 3168–75. http://dx.doi.org/10.1182/blood-2006-05-024406.
Texto completo da fonteGallego, Carolina, Douglas Golenbock, Maria Adelaida Gomez e Nancy Gore Saravia. "Toll-Like Receptors Participate in Macrophage Activation and Intracellular Control of Leishmania (Viannia) panamensis". Infection and Immunity 79, n.º 7 (25 de abril de 2011): 2871–79. http://dx.doi.org/10.1128/iai.01388-10.
Texto completo da fonteMcKenzie, C. G. J., U. Koser, L. E. Lewis, J. M. Bain, H. M. Mora-Montes, R. N. Barker, N. A. R. Gow e L. P. Erwig. "Contribution of Candida albicans Cell Wall Components to Recognition by and Escape from Murine Macrophages". Infection and Immunity 78, n.º 4 (1 de fevereiro de 2010): 1650–58. http://dx.doi.org/10.1128/iai.00001-10.
Texto completo da fonteWilson, Justin E., Bhuvana Katkere e James R. Drake. "Francisella tularensis Induces Ubiquitin-Dependent Major Histocompatibility Complex Class II Degradation in Activated Macrophages". Infection and Immunity 77, n.º 11 (24 de agosto de 2009): 4953–65. http://dx.doi.org/10.1128/iai.00844-09.
Texto completo da fonteCareau, Éric, Léa-Isabelle Proulx, Philippe Pouliot, Annie Spahr, Véronique Turmel e Élyse Y. Bissonnette. "Antigen sensitization modulates alveolar macrophage functions in an asthma model". American Journal of Physiology-Lung Cellular and Molecular Physiology 290, n.º 5 (maio de 2006): L871—L879. http://dx.doi.org/10.1152/ajplung.00219.2005.
Texto completo da fonteShinonaga, Masamichi, Cha Cheng Chang, Noriyuki Suzuki, Masazumi Sato e Takeo Kuwabara. "Immunohistological evaluation of macrophage infiltrates in brain tumors". Journal of Neurosurgery 68, n.º 2 (fevereiro de 1988): 259–65. http://dx.doi.org/10.3171/jns.1988.68.2.0259.
Texto completo da fonteFedorov, A. A., N. A. Ermak, T. S. Gerashchenko, E. B. Topolnitskii, N. A. Shefer, E. O. Rodionov e M. N. Stakheyeva. "Polarization of macrophages: mechanisms, markers and factors of induction". Siberian journal of oncology 21, n.º 4 (3 de setembro de 2022): 124–36. http://dx.doi.org/10.21294/1814-4861-2022-21-4-124-136.
Texto completo da fonteXu, Jiawei, Lanya Fu, Junyao Deng, Jiaqi Zhang, Ying Zou, Liqiang Liao, Xinrui Ma et al. "miR-301a Deficiency Attenuates the Macrophage Migration and Phagocytosis through YY1/CXCR4 Pathway". Cells 11, n.º 24 (7 de dezembro de 2022): 3952. http://dx.doi.org/10.3390/cells11243952.
Texto completo da fonteBonetti, Justine, Alessandro Corti, Lucie Lerouge, Alfonso Pompella e Caroline Gaucher. "Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis—Nitro-Redox Interconnections". Antioxidants 10, n.º 4 (26 de março de 2021): 516. http://dx.doi.org/10.3390/antiox10040516.
Texto completo da fonteDiNapoli, Sarah R., Vanessa M. Hirsch e Jason M. Brenchley. "Macrophages in Progressive Human Immunodeficiency Virus/Simian Immunodeficiency Virus Infections". Journal of Virology 90, n.º 17 (15 de junho de 2016): 7596–606. http://dx.doi.org/10.1128/jvi.00672-16.
Texto completo da fonteGarcía-Rodas, Rocío, Fernando González-Camacho, Juan Luis Rodríguez-Tudela, Manuel Cuenca-Estrella e Oscar Zaragoza. "The Interaction between Candida krusei and Murine Macrophages Results in Multiple Outcomes, Including Intracellular Survival and Escape from Killing". Infection and Immunity 79, n.º 6 (21 de março de 2011): 2136–44. http://dx.doi.org/10.1128/iai.00044-11.
Texto completo da fonteTaylor, Sarah A., Shang-Yang Chen, Gaurav Gadhvi, Liang Feng, Kyle D. Gromer, Hiam Abdala-Valencia, Kiwon Nam et al. "Transcriptional profiling of pediatric cholestatic livers identifies three distinct macrophage populations". PLOS ONE 16, n.º 1 (7 de janeiro de 2021): e0244743. http://dx.doi.org/10.1371/journal.pone.0244743.
Texto completo da fonteUlndreaj, Antigona, Angela Li, Yonghong Chen, Rickvinder Besla, Shaun Pacheco, Marwan G. Althagafi, Myron I. Cybulsky, Thomas Lindsay, Clinton S. Robbins e John S. Byrne. "Adventitial recruitment of Lyve-1− macrophages drives aortic aneurysm in an angiotensin-2-based murine model". Clinical Science 135, n.º 10 (maio de 2021): 1295–309. http://dx.doi.org/10.1042/cs20200963.
Texto completo da fonteDeng, Lishuang, Zhijie Jian, Tong Xu, Fengqin Li, Huidan Deng, Yuancheng Zhou, Siyuan Lai, Zhiwen Xu e Ling Zhu. "Macrophage Polarization: An Important Candidate Regulator for Lung Diseases". Molecules 28, n.º 5 (4 de março de 2023): 2379. http://dx.doi.org/10.3390/molecules28052379.
Texto completo da fonteRandolph, Gwendalyn J. "Monocyte Trafficking, Inflammation, and Atherosclerosis". Blood 122, n.º 21 (15 de novembro de 2013): SCI—53—SCI—53. http://dx.doi.org/10.1182/blood.v122.21.sci-53.sci-53.
Texto completo da fonteAlQasrawi, Dania, e Saleh A. Naser. "Nicotine Modulates MyD88-Dependent Signaling Pathway in Macrophages during Mycobacterial Infection". Microorganisms 8, n.º 11 (17 de novembro de 2020): 1804. http://dx.doi.org/10.3390/microorganisms8111804.
Texto completo da fonteLi, Wei, Yaomei Wang, Huizhi Zhao, Huan Zhang, Yuanlin Xu, Shihui Wang, Xinhua Guo et al. "Identification, Isolation and Transcriptome Analyses of Mouse, Rat and Man Erythroblastic Island Central Macrophages". Blood 132, Supplement 1 (29 de novembro de 2018): 841. http://dx.doi.org/10.1182/blood-2018-99-114188.
Texto completo da fonteWang, Jianjun, Yongliang Yao, Jing Xiong, Jianhong Wu, Xin Tang e Guangxin Li. "Evaluation of the Inflammatory Response in Macrophages Stimulated with Exosomes Secreted byMycobacterium avium-Infected Macrophages". BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/658421.
Texto completo da fonteLu, Chunxia, P. Anil Kumar, Yong Fan, Mark A. Sperling e Ram K. Menon. "A Novel Effect of Growth Hormone on Macrophage Modulates Macrophage-Dependent Adipocyte Differentiation". Endocrinology 151, n.º 5 (25 de fevereiro de 2010): 2189–99. http://dx.doi.org/10.1210/en.2009-1194.
Texto completo da fonteFischer, Carrie D., Jennifer K. Beatty, Stephanie C. Duquette, Douglas W. Morck, Merlyn J. Lucas e André G. Buret. "Direct and Indirect Anti-Inflammatory Effects of Tulathromycin in Bovine Macrophages: Inhibition of CXCL-8 Secretion, Induction of Apoptosis, and Promotion of Efferocytosis". Antimicrobial Agents and Chemotherapy 57, n.º 3 (7 de janeiro de 2013): 1385–93. http://dx.doi.org/10.1128/aac.01598-12.
Texto completo da fonteCotechini, Tiziana, Aline Atallah e Arielle Grossman. "Tissue-Resident and Recruited Macrophages in Primary Tumor and Metastatic Microenvironments: Potential Targets in Cancer Therapy". Cells 10, n.º 4 (20 de abril de 2021): 960. http://dx.doi.org/10.3390/cells10040960.
Texto completo da fonteGautier, Emmanuel L., Stoyan Ivanov, Jesse W. Williams, Stanley Ching-Cheng Huang, Genevieve Marcelin, Keke Fairfax, Peter L. Wang et al. "Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival". Journal of Experimental Medicine 211, n.º 8 (14 de julho de 2014): 1525–31. http://dx.doi.org/10.1084/jem.20140570.
Texto completo da fonteDende, Chaitanya, Mihir Pendse, Daniel Propheter, Gabriella Quinn e Lora V. Hooper. "Vitamin A regulates phagocytosis by resident macrophages of the small intestine". Journal of Immunology 208, n.º 1_Supplement (1 de maio de 2022): 113.23. http://dx.doi.org/10.4049/jimmunol.208.supp.113.23.
Texto completo da fonteGREGORY, D. J., e M. OLIVIER. "Subversion of host cell signalling by the protozoan parasiteLeishmania". Parasitology 130, S1 (março de 2005): S27—S35. http://dx.doi.org/10.1017/s0031182005008139.
Texto completo da fonteSingh, Gyanesh, U. C. Pachouri, Chirag Chopra, Preeti Bajaj e Pushplata Singh. "Macrophage Gene Therapy: opening novel therapeutic avenues for immune disorders". F1000Research 4 (6 de agosto de 2015): 495. http://dx.doi.org/10.12688/f1000research.6817.1.
Texto completo da fonteXie, Linglin, M. Teresa Ortega, Silvia Mora e Stephen K. Chapes. "Interactive Changes between Macrophages and Adipocytes". Clinical and Vaccine Immunology 17, n.º 4 (17 de fevereiro de 2010): 651–59. http://dx.doi.org/10.1128/cvi.00494-09.
Texto completo da fonteKnuth, Anne-Kathrin, Arnaud Huard, Zumer Naeem, Peter Rappl, Rebekka Bauer, Ana Carolina Mota, Tobias Schmid et al. "Apoptotic Cells induce Proliferation of Peritoneal Macrophages". International Journal of Molecular Sciences 22, n.º 5 (24 de fevereiro de 2021): 2230. http://dx.doi.org/10.3390/ijms22052230.
Texto completo da fonteMisharin, Alexander V., Luisa Morales-Nebreda, Paul A. Reyfman, Carla M. Cuda, James M. Walter, Alexandra C. McQuattie-Pimentel, Ching-I. Chen et al. "Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span". Journal of Experimental Medicine 214, n.º 8 (10 de julho de 2017): 2387–404. http://dx.doi.org/10.1084/jem.20162152.
Texto completo da fontePeng, Yuan, Mengxian Zhou, Hong Yang, Ruyi Qu, Yan Qiu, Jiawen Hao, Hongsheng Bi e Dadong Guo. "Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases". Mediators of Inflammation 2023 (8 de junho de 2023): 1–20. http://dx.doi.org/10.1155/2023/8821610.
Texto completo da fonteXu, Rong, Hong-Fan Sun, David W. Williams, Adam V. Jones, Ali Al-Hussaini, Bing Song e Xiao-Qing Wei. "IL-34 SuppressesCandida albicansInduced TNFαProduction in M1 Macrophages by Downregulating Expression of Dectin-1 and TLR2". Journal of Immunology Research 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/328146.
Texto completo da fonteTian, Ying, Sheri E. Kelemen e Michael V. Autieri. "Inhibition of AIF-1 expression by constitutive siRNA expression reduces macrophage migration, proliferation, and signal transduction initiated by atherogenic stimuli". American Journal of Physiology-Cell Physiology 290, n.º 4 (abril de 2006): C1083—C1091. http://dx.doi.org/10.1152/ajpcell.00381.2005.
Texto completo da fonteHamrick, Terri S., Edward A. Havell, John R. Horton e Paul E. Orndorff. "Host and Bacterial Factors Involved in the Innate Ability of Mouse Macrophages To Eliminate Internalized UnopsonizedEscherichia coli". Infection and Immunity 68, n.º 1 (1 de janeiro de 2000): 125–32. http://dx.doi.org/10.1128/iai.68.1.125-132.2000.
Texto completo da fonteBauerle, Kevin Thomas, Jisu Oh, Amy Elizabeth Riek, Adriana Dusso, Anabel L. Castro-Grattoni, R. Ariel Gomez, Maria L. Sequeira-Lopez e Carlos Bernal-Mizrachi. "Vitamin D Deficiency Induces Macrophage Pro-Inflammatory Phenotype via ER Stress-Mediated Activation of Renin-Angiotensin System". Journal of the Endocrine Society 5, Supplement_1 (1 de maio de 2021): A304—A305. http://dx.doi.org/10.1210/jendso/bvab048.620.
Texto completo da fonteAziz, Athar, Laurent Vanhille, Peer Mohideen, Louise M. Kelly, Claas Otto, Youssef Bakri, Noushine Mossadegh, Sandrine Sarrazin e Michael H. Sieweke. "Development of Macrophages with Altered Actin Organization in the Absence of MafB". Molecular and Cellular Biology 26, n.º 18 (15 de setembro de 2006): 6808–18. http://dx.doi.org/10.1128/mcb.00245-06.
Texto completo da fonteTorre, Donato, Luisa Gennero, F. M. Baccino, Filippo Speranza, Gilberto Biondi e Agostino Pugliese. "Impaired Macrophage Phagocytosis of Apoptotic Neutrophils in Patients with Human Immunodeficiency Virus Type 1 Infection". Clinical and Vaccine Immunology 9, n.º 5 (setembro de 2002): 983–86. http://dx.doi.org/10.1128/cdli.9.5.983-986.2002.
Texto completo da fonteHashimoto, Shin-ichi, Takuji Suzuki, Hong-Yan Dong, Nobuyuki Yamazaki e Kouji Matsushima. "Serial Analysis of Gene Expression in Human Monocytes and Macrophages". Blood 94, n.º 3 (1 de agosto de 1999): 837–44. http://dx.doi.org/10.1182/blood.v94.3.837.413k02_837_844.
Texto completo da fonteCummings, Thomas J., Christine M. Hulette, Sandra H. Bigner, Gregory J. Riggins e Roger E. McLendon. "HAM56-Immunoreactive Macrophages in Untreated Infiltrating Gliomas". Archives of Pathology & Laboratory Medicine 125, n.º 5 (1 de maio de 2001): 637–41. http://dx.doi.org/10.5858/2001-125-0637-himiui.
Texto completo da fonteMartins, Flávia, Rosa Oliveira, Bruno Cavadas, Filipe Pinto, Ana Patrícia Cardoso, Flávia Castro, Bárbara Sousa et al. "Hypoxia and Macrophages Act in Concert Towards a Beneficial Outcome in Colon Cancer". Cancers 12, n.º 4 (28 de março de 2020): 818. http://dx.doi.org/10.3390/cancers12040818.
Texto completo da fonteDoherty, T. M., R. Kastelein, S. Menon, S. Andrade e R. L. Coffman. "Modulation of murine macrophage function by IL-13." Journal of Immunology 151, n.º 12 (15 de dezembro de 1993): 7151–60. http://dx.doi.org/10.4049/jimmunol.151.12.7151.
Texto completo da fonteZhang, Kaibo, Feng Liang, Xiuzhi Jia, Qin Qian e Haihe Wang. "Research Status and Progress of the Role of Macrophages in Rheumatoid Arthritis Inflammatory Response". Journal of Biomedical Nanotechnology 19, n.º 6 (1 de junho de 2023): 919–26. http://dx.doi.org/10.1166/jbn.2023.3607.
Texto completo da fonteLiu, Shuangqing, Huilei Zhang, Yanan Li, Yana Zhang, Yangyang Bian, Yanqiong Zeng, Xiaohan Yao et al. "S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation". Journal for ImmunoTherapy of Cancer 9, n.º 6 (junho de 2021): e002548. http://dx.doi.org/10.1136/jitc-2021-002548.
Texto completo da fonteHogan, M. M., e S. N. Vogel. "Production of tumor necrosis factor by rIFN-gamma-primed C3H/HeJ (Lpsd) macrophages requires the presence of lipid A-associated proteins." Journal of Immunology 141, n.º 12 (15 de dezembro de 1988): 4196–202. http://dx.doi.org/10.4049/jimmunol.141.12.4196.
Texto completo da fonteLuo, Qianting, Xingyang Li, Wenchao Zhong, Wei Cao, Mingjing Zhu, Antong Wu, Wanyi Chen et al. "Dicalcium silicate-induced mitochondrial dysfunction and autophagy-mediated macrophagic inflammation promotes osteogenic differentiation of BMSCs". Regenerative Biomaterials, 13 de dezembro de 2021. http://dx.doi.org/10.1093/rb/rbab075.
Texto completo da fonteBo, Haotian, Ulrich Aymard Ekomi Moure, Yuanmiao Yang, Jun Pan, Li Li, Miao Wang, Xiaoxue Ke e Hongjuan Cui. "Mycobacterium tuberculosis-macrophage interaction: Molecular updates". Frontiers in Cellular and Infection Microbiology 13 (3 de março de 2023). http://dx.doi.org/10.3389/fcimb.2023.1062963.
Texto completo da fonteYi, D. ‐Y, Q. ‐Y Xu, Y. He, X. ‐Q Zheng, T. ‐C Yang e Y. Lin. "Treponema pallidum protein Tp47 induced prostaglandin E2 to inhibit the phagocytosis in human macrophages". Journal of the European Academy of Dermatology and Venereology, 23 de janeiro de 2024. http://dx.doi.org/10.1111/jdv.19809.
Texto completo da fonteMuhammad, Sajjad, Shafqat Rasul Chaudhry, Gergana Dobreva, Michael T. Lawton, Mika Niemelä e Daniel Hänggi. "Vascular Macrophages as Therapeutic Targets to Treat Intracranial Aneurysms". Frontiers in Immunology 12 (8 de março de 2021). http://dx.doi.org/10.3389/fimmu.2021.630381.
Texto completo da fonteLuque-Campos, Noymar, Felipe A. Bustamante-Barrientos, Carolina Pradenas, Cynthia García, María Jesús Araya, Candice Bohaud, Rafael Contreras-López et al. "The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming". Frontiers in Immunology 12 (4 de junho de 2021). http://dx.doi.org/10.3389/fimmu.2021.624746.
Texto completo da fonte