Artigos de revistas sobre o tema "Machine Learning Informé"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Machine Learning Informé".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Shoureshi, R., D. Swedes e R. Evans. "Learning Control for Autonomous Machines". Robotica 9, n.º 2 (abril de 1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Texto completo da fontePateras, Joseph, Pratip Rana e Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning". Applied Sciences 13, n.º 12 (7 de junho de 2023): 6892. http://dx.doi.org/10.3390/app13126892.
Texto completo da fonteMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, Yin-Chung Huang, Yuxin Ma, Alex B. McBratney, Wartini Ng et al. "Soil Science-Informed Machine Learning". Geoderma 452 (dezembro de 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Texto completo da fonteXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco e Marco Leonetti. "Physics-informed machine learning for microscopy". EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Texto completo da fonteZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu e Zheng Xu. "Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils". INFORM International News on Fats, Oils, and Related Materials 31, n.º 4 (1 de abril de 2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Texto completo da fonteSerre, Thomas. "Deep Learning: The Good, the Bad, and the Ugly". Annual Review of Vision Science 5, n.º 1 (15 de setembro de 2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Texto completo da fonteArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan e Philip T. Thiem. "Historical maps inform landform cognition in machine learning". Abstracts of the ICA 6 (11 de agosto de 2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Texto completo da fonteKarimpouli, Sadegh, e Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation". Geoscience Frontiers 11, n.º 6 (novembro de 2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Texto completo da fonteZhang, Xi. "Application of Machine Learning in Stock Price Analysis". Highlights in Science, Engineering and Technology 107 (15 de agosto de 2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Texto completo da fonteLiu, Yang, Ruo Jia, Jieping Ye e Xiaobo Qu. "How machine learning informs ride-hailing services: A survey". Communications in Transportation Research 2 (dezembro de 2022): 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Texto completo da fonteSchwartz, Oscar. "Competing Visions for AI". Digital Culture & Society 4, n.º 1 (1 de março de 2018): 87–106. http://dx.doi.org/10.14361/dcs-2018-0107.
Texto completo da fonteWang, Yingxu, Yousheng Tian e Kendal Hu. "Semantic Manipulations and Formal Ontology for Machine Learning based on Concept Algebra". International Journal of Cognitive Informatics and Natural Intelligence 5, n.º 3 (julho de 2011): 1–29. http://dx.doi.org/10.4018/ijcini.2011070101.
Texto completo da fontePandey, Mrs Arjoo. "Machine Learning". International Journal for Research in Applied Science and Engineering Technology 11, n.º 8 (31 de agosto de 2023): 864–69. http://dx.doi.org/10.22214/ijraset.2023.55224.
Texto completo da fonteHancock, Kristy. "Machine-learning Recommender Systems Can Inform Collection Development Decisions". Evidence Based Library and Information Practice 19, n.º 2 (14 de junho de 2024): 133–35. http://dx.doi.org/10.18438/eblip30521.
Texto completo da fonteBerk, Richard, e Jordan Hyatt. "Machine Learning Forecasts of Risk to Inform Sentencing Decisions". Federal Sentencing Reporter 27, n.º 4 (1 de abril de 2015): 222–28. http://dx.doi.org/10.1525/fsr.2015.27.4.222.
Texto completo da fonteSedej, Owen, Eric Mbonimpa, Trevor Sleight e Jeremy Slagley. "Artificial Neural Networks and Gradient Boosted Machines Used for Regression to Evaluate Gasification Processes: A Review". Journal of Energy and Power Technology 4, n.º 3 (18 de fevereiro de 2022): 1. http://dx.doi.org/10.21926/jept.2203027.
Texto completo da fonteMasamah, Ulfa, e Dadan Sumardani. "Utilization of The Thrasher and Rice Mill Machines in Composition Function Learning: A Hypothetical Learning Trajectory Design". Hipotenusa : Journal of Mathematical Society 3, n.º 2 (28 de dezembro de 2021): 144–57. http://dx.doi.org/10.18326/hipotenusa.v3i2.5994.
Texto completo da fontePazzani, Michael, Severine Soltani, Robert Kaufman, Samson Qian e Albert Hsiao. "Expert-Informed, User-Centric Explanations for Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 11 (28 de junho de 2022): 12280–86. http://dx.doi.org/10.1609/aaai.v36i11.21491.
Texto completo da fonteGao, Kaifu, Dong Chen, Alfred J. Robison e Guo-Wei Wei. "Proteome-Informed Machine Learning Studies of Cocaine Addiction". Journal of Physical Chemistry Letters 12, n.º 45 (9 de novembro de 2021): 11122–34. http://dx.doi.org/10.1021/acs.jpclett.1c03133.
Texto completo da fonteBarmparis, G. D., e G. P. Tsironis. "Discovering nonlinear resonances through physics-informed machine learning". Journal of the Optical Society of America B 38, n.º 9 (2 de agosto de 2021): C120. http://dx.doi.org/10.1364/josab.430206.
Texto completo da fontePilania, G., K. J. McClellan, C. R. Stanek e B. P. Uberuaga. "Physics-informed machine learning for inorganic scintillator discovery". Journal of Chemical Physics 148, n.º 24 (28 de junho de 2018): 241729. http://dx.doi.org/10.1063/1.5025819.
Texto completo da fonteBai, Tao, e Pejman Tahmasebi. "Accelerating geostatistical modeling using geostatistics-informed machine Learning". Computers & Geosciences 146 (janeiro de 2021): 104663. http://dx.doi.org/10.1016/j.cageo.2020.104663.
Texto completo da fonteLagomarsino-Oneto, Daniele, Giacomo Meanti, Nicolò Pagliana, Alessandro Verri, Andrea Mazzino, Lorenzo Rosasco e Agnese Seminara. "Physics informed machine learning for wind speed prediction". Energy 268 (abril de 2023): 126628. http://dx.doi.org/10.1016/j.energy.2023.126628.
Texto completo da fonteTóth, Máté, Adam Brown, Elizabeth Cross, Timothy Rogers e Neil D. Sims. "Resource-efficient machining through physics-informed machine learning". Procedia CIRP 117 (2023): 347–52. http://dx.doi.org/10.1016/j.procir.2023.03.059.
Texto completo da fonteKapoor, Taniya, Hongrui Wang, Alfredo Núñez e Rolf Dollevoet. "Physics-informed machine learning for moving load problems". Journal of Physics: Conference Series 2647, n.º 15 (1 de junho de 2024): 152003. http://dx.doi.org/10.1088/1742-6596/2647/15/152003.
Texto completo da fonteBehtash, Mohammad, Sourav Das, Sina Navidi, Abhishek Sarkar, Pranav Shrotriya e Chao Hu. "Physics-Informed Machine Learning for Battery Capacity Forecasting". ECS Meeting Abstracts MA2024-01, n.º 2 (9 de agosto de 2024): 210. http://dx.doi.org/10.1149/ma2024-012210mtgabs.
Texto completo da fonteCele, Nomfundo, Alain Kibangou e Walter Musakwa. "Machine Learning Analysis of Informal Minibus Taxi Driving". ITM Web of Conferences 69 (2024): 03003. https://doi.org/10.1051/itmconf/20246903003.
Texto completo da fonteThete, Prof Sharda, Siddheshwar Midgule, Nikesh Konde e Suraj Kale. "Malware Detection Using Machine Learning and Deep Learning". International Journal for Research in Applied Science and Engineering Technology 10, n.º 11 (30 de novembro de 2022): 1942–45. http://dx.doi.org/10.22214/ijraset.2022.47682.
Texto completo da fonteMidgule, Siddheshwar. "Malware Detection Using Machine Learning and Deep Learning". International Journal for Research in Applied Science and Engineering Technology 11, n.º 5 (31 de maio de 2023): 4755–58. http://dx.doi.org/10.22214/ijraset.2023.52704.
Texto completo da fonteLympany, Shane V., Matthew F. Calton, Mylan R. Cook, Kent L. Gee e Mark K. Transtrum. "Mapping ambient sound levels using physics-informed machine learning". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A48—A49. http://dx.doi.org/10.1121/10.0015498.
Texto completo da fonteChen, James Ming, Mira Zovko, Nika Šimurina e Vatroslav Zovko. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM2.5 Pollution". International Journal of Environmental Research and Public Health 18, n.º 16 (17 de agosto de 2021): 8688. http://dx.doi.org/10.3390/ijerph18168688.
Texto completo da fonteShah, Chirag Vinalbhai. "Transforming Retail: The Impact of AI and Machine Learning on Big Data Analytics". Global Research and Development Journals 8, n.º 8 (1 de agosto de 2023): 1–8. http://dx.doi.org/10.70179/grdjev09i100010.
Texto completo da fonteRavi, Aravind. "Optimizing Retail Operations: The Role of Machine Learning and Big Data in Data Science". Global Research and Development Journals 9, n.º 6 (5 de junho de 2024): 1–10. http://dx.doi.org/10.70179/grdjev09i100015.
Texto completo da fonteK., Mrs Tejaswi. "Unmasking DeepFakes Using Machine Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 03 (30 de março de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem29808.
Texto completo da fonteSiontis, Konstantinos C., Xiaoxi Yao, James P. Pirruccello, Anthony A. Philippakis e Peter A. Noseworthy. "How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?" Circulation Research 127, n.º 1 (19 de junho de 2020): 155–69. http://dx.doi.org/10.1161/circresaha.120.316401.
Texto completo da fonteLee, Jonghwan. "Physics-informed machine learning model for bias temperature instability". AIP Advances 11, n.º 2 (1 de fevereiro de 2021): 025111. http://dx.doi.org/10.1063/5.0040100.
Texto completo da fonteMondal, B., T. Mukherjee e T. DebRoy. "Crack free metal printing using physics informed machine learning". Acta Materialia 226 (março de 2022): 117612. http://dx.doi.org/10.1016/j.actamat.2021.117612.
Texto completo da fonteHowland, Michael F., e John O. Dabiri. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning". Energies 12, n.º 14 (16 de julho de 2019): 2716. http://dx.doi.org/10.3390/en12142716.
Texto completo da fonteTartakovsky, A. M., D. A. Barajas-Solano e Q. He. "Physics-informed machine learning with conditional Karhunen-Loève expansions". Journal of Computational Physics 426 (fevereiro de 2021): 109904. http://dx.doi.org/10.1016/j.jcp.2020.109904.
Texto completo da fonteHsu, Abigail, Baolian Cheng e Paul A. Bradley. "Analysis of NIF scaling using physics informed machine learning". Physics of Plasmas 27, n.º 1 (janeiro de 2020): 012703. http://dx.doi.org/10.1063/1.5130585.
Texto completo da fonteKarpov, Platon I., Chengkun Huang, Iskandar Sitdikov, Chris L. Fryer, Stan Woosley e Ghanshyam Pilania. "Physics-informed Machine Learning for Modeling Turbulence in Supernovae". Astrophysical Journal 940, n.º 1 (1 de novembro de 2022): 26. http://dx.doi.org/10.3847/1538-4357/ac88cc.
Texto completo da fonteLang, Xiao, Da Wu e Wengang Mao. "Physics-informed machine learning models for ship speed prediction". Expert Systems with Applications 238 (março de 2024): 121877. http://dx.doi.org/10.1016/j.eswa.2023.121877.
Texto completo da fonteUganya, G., I. Bremnavas, K. V. Prashanth, M. Rajkumar, R. V. S. Lalitha e Charanjeet Singh. "Empowering autonomous indoor navigation with informed machine learning techniques". Computers and Electrical Engineering 111 (outubro de 2023): 108918. http://dx.doi.org/10.1016/j.compeleceng.2023.108918.
Texto completo da fontePiccialli, Francesco, Maizar Raissi, Felipe A. C. Viana, Giancarlo Fortino, Huimin Lu e Amir Hussain. "Guest Editorial: Special Issue on Physics-Informed Machine Learning". IEEE Transactions on Artificial Intelligence 5, n.º 3 (março de 2024): 964–66. http://dx.doi.org/10.1109/tai.2023.3342563.
Texto completo da fonteKapoor, Taniya, Abhishek Chandra, Daniel M. Tartakovsky, Hongrui Wang, Alfredo Nunez e Rolf Dollevoet. "Neural Oscillators for Generalization of Physics-Informed Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 12 (24 de março de 2024): 13059–67. http://dx.doi.org/10.1609/aaai.v38i12.29204.
Texto completo da fonteMarian, Max, e Stephan Tremmel. "Physics-Informed Machine Learning—An Emerging Trend in Tribology". Lubricants 11, n.º 11 (30 de outubro de 2023): 463. http://dx.doi.org/10.3390/lubricants11110463.
Texto completo da fonteLiu, Hao-Xuan, Hai-Le Yan, Ying Zhao, Nan Jia, Shuai Tang, Daoyong Cong, Bo Yang et al. "Machine learning informed tetragonal ratio c/a of martensite". Computational Materials Science 233 (janeiro de 2024): 112735. http://dx.doi.org/10.1016/j.commatsci.2023.112735.
Texto completo da fontevon Bloh, Malte, David Lobell e Senthold Asseng. "Knowledge informed hybrid machine learning in agricultural yield prediction". Computers and Electronics in Agriculture 227 (dezembro de 2024): 109606. http://dx.doi.org/10.1016/j.compag.2024.109606.
Texto completo da fonteCheraghlou, Shayan, Praneeth Sadda, George O. Agogo e Michael Girardi. "A machine‐learning modified CART algorithm informs Merkel cell carcinoma prognosis". Australasian Journal of Dermatology 62, n.º 3 (24 de maio de 2021): 323–30. http://dx.doi.org/10.1111/ajd.13624.
Texto completo da fonteGao, Junbo. "Applications of machine learning in quantitative trading". Applied and Computational Engineering 82, n.º 1 (8 de novembro de 2024): 124–29. http://dx.doi.org/10.54254/2755-2721/82/20240984.
Texto completo da fonte