Literatura científica selecionada sobre o tema "Machine learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Machine learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Machine learning"
M. Brandao, Iago, e Cesar da Costa. "FAULT DIAGNOSIS OF ROTARY MACHINES USING MACHINE LEARNING". Eletrônica de Potência 27, n.º 03 (22 de setembro de 2022): 1–8. http://dx.doi.org/10.18618/rep.2022.3.0013.
Texto completo da fonteNaeini, Ehsan Zabihi, e Kenton Prindle. "Machine learning and learning from machines". Leading Edge 37, n.º 12 (dezembro de 2018): 886–93. http://dx.doi.org/10.1190/tle37120886.1.
Texto completo da fonteSabeti, Behnam, Hossein Abedi Firouzjaee, Reza Fahmi, Saeid Safavi, Wenwu Wang e Mark D. Plumbley. "Credit Risk Rating Using State Machines and Machine Learning". International Journal of Trade, Economics and Finance 11, n.º 6 (dezembro de 2020): 163–68. http://dx.doi.org/10.18178/ijtef.2020.11.6.683.
Texto completo da fonteTrott, David. "Deceiving Machines: Sabotaging Machine Learning". CHANCE 33, n.º 2 (2 de abril de 2020): 20–24. http://dx.doi.org/10.1080/09332480.2020.1754067.
Texto completo da fonteSiddique, Shumaila. "Machine Learning and Cryptography". Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (25 de julho de 2020): 2540–45. http://dx.doi.org/10.5373/jardcs/v12sp7/20202387.
Texto completo da fonteCharpentier, Arthur, Emmanuel Flachaire e Antoine Ly. "Econometrics and Machine Learning". Economie et Statistique / Economics and Statistics, n.º 505d (11 de abril de 2019): 147–69. http://dx.doi.org/10.24187/ecostat.2018.505d.1970.
Texto completo da fonteMor, Laksanya. "Introduction to Machine Learning". International Journal of Science and Research (IJSR) 11, n.º 3 (5 de março de 2022): 1522–25. http://dx.doi.org/10.21275/sr22328110600.
Texto completo da fonteLewis, Ted G., e Peter J. Denning. "Learning machine learning". Communications of the ACM 61, n.º 12 (20 de novembro de 2018): 24–27. http://dx.doi.org/10.1145/3286868.
Texto completo da fonteRasi, Mr Ajmal, Dr Rajasimha A. Makram e Ms Shilpa Das. "Topic Detection using Machine Learning". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30 de junho de 2018): 1433–36. http://dx.doi.org/10.31142/ijtsrd14272.
Texto completo da fonteMudiraj, Nakkala Srinivas. "Detecting Phishing using Machine Learning". International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (30 de junho de 2019): 488–90. http://dx.doi.org/10.31142/ijtsrd23755.
Texto completo da fonteTeses / dissertações sobre o assunto "Machine learning"
Andersson, Viktor. "Machine Learning in Logistics: Machine Learning Algorithms : Data Preprocessing and Machine Learning Algorithms". Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64721.
Texto completo da fonteData Ductus är ett svenskt IT-konsultbolag, deras kundbas sträcker sig från små startups till stora redan etablerade företag. Företaget har stadigt växt sedan 80-talet och har etablerat kontor både i Sverige och i USA. Med hjälp av maskininlärning kommer detta projket att presentera en möjlig lösning på de fel som kan uppstå inom logistikverksamheten, orsakade av den mänskliga faktorn.Ett sätt att förbehandla data innan den tillämpas på en maskininlärning algoritm, liksom ett par algoritmer för användning kommer att presenteras.
Dinakar, Karthik. "Lensing Machines : representing perspective in machine learning". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112523.
Texto completo da fonteCataloged from PDF version of thesis. Due to the condition of the original material with text runs off the edges of the pages, the reproduction may have unavoidable flaws.
Includes bibliographical references (pages 167-172).
Generative models are venerated as full probabilistic models that randomly generate observable data given a set of latent variables that cannot be directly observed. They can be used to simulate values for variables in the model, allowing analysis by synthesis or model criticism, towards an iterative cycle of model specification, estimation, and critique. However, many datasets represent a combination of several viewpoints - different ways of looking at the same data that leads to various generalizations. For example, a corpus that has data generated by multiple people may be mixtures of several perspectives and can be viewed with different opinions by others. It isn't always possible to represent the viewpoints by clean separation, in advance, of examples representing each perspective and train a separate model for each point of view. In this thesis, we introduce lensing, a mixed-initiative technique to (i) extract lenses or mappings between machine-learned representations and perspectives of human experts, and (2) generate lensed models that afford multiple perspectives of the same dataset. We explore lensing of latent variable model in their configuration, parameter and evidential spaces. We apply lensing to three health applications, namely imbuing the perspectives of experts into latent variable models that analyze adolescent distress and crisis counseling.
by Karthik Dinakar.
Ph. D.
Tebbifakhr, Amirhossein. "Machine Translation For Machines". Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/320504.
Texto completo da fonteRoderus, Jens, Simon Larson e Eric Pihl. "Hadoop scalability evaluation for machine learning algorithms on physical machines : Parallel machine learning on computing clusters". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20102.
Texto completo da fonteCollazo, Santiago Bryan Omar. "Machine learning blocks". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100301.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
This work presents MLBlocks, a machine learning system that lets data scientists explore the space of modeling techniques in a very easy and efficient manner. We show how the system is very general in the sense that virtually any problem and dataset can be casted to use MLBlocks, and how it supports the exploration of Discriminative Modeling, Generative Modeling and the use of synthetic features to boost performance. MLBlocks is highly parameterizable, and some of its powerful features include the ease of formulating lead and lag experiments for time series data, its simple interface for automation, and its extensibility to additional modeling techniques. We show how we used MLBlocks to quickly get results for two very different realworld data science problems. In the first, we used time series data from Massive Open Online Courses to cast many lead and lag formulations of predicting student dropout. In the second, we used MLBlocks' Discriminative Modeling functionality to find the best-performing model for predicting the destination of a car given its past trajectories. This later functionality is self-optimizing and will find the best model by exploring a space of 11 classification algorithms with a combination of Multi-Armed Bandit strategies and Gaussian Process optimizations, all in a distributed fashion in the cloud.
by Bryan Omar Collazo Santiago.
M. Eng.
Shukla, Ritesh. "Machine learning ecosystem : implications for business strategy centered on machine learning". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/107342.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 48-50).
As interest for adopting machine learning as a core component of a business strategy increases, business owners face the challenge of integrating an uncertain and rapidly evolving technology into their organization, and depending on this for the success of their strategy. The field of Machine learning has a rich set of literature for modeling of technical systems that implement machine learning. This thesis attempts to connect the literature for business and technology and for evolution and adoption of technology to the emergent properties of machine learning systems. This thesis provides high-level levers and frameworks to better prepare business owners to adopt machine learning to satisfy their strategic goals.
by Ritesh Shukla.
S.M. in Engineering and Management
Huembeli, Patrick. "Machine learning for quantum physics and quantum physics for machine learning". Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672085.
Texto completo da fonteLa investigación en la intersección del aprendizaje automático (machine learning, ML) y la física cuántica es una área en crecimiento reciente debido al éxito y las enormes expectativas de ambas áreas. ML es posiblemente una de las tecnologías más prometedoras que ha alterado y seguirá alterando muchos aspectos de nuestras vidas. Es casi seguro que la forma en que investigamos no es una excepción y el ML, con su capacidad sin precedentes para encontrar patrones ocultos en los datos ayudará a futuros descubrimientos científicos. La física cuántica, por otro lado, aunque a veces no es del todo intuitiva, es una de las teorías físicas más exitosas, y además estamos a punto de adoptar algunas tecnologías cuánticas en nuestra vida diaria. La física cuántica de los muchos cuerpos (many-body) es una subárea de la física cuántica donde estudiamos el comportamiento colectivo de partículas o átomos y la aparición de fenómenos que se deben a este comportamiento colectivo, como las fases de la materia. El estudio de las transiciones de fase de estos sistemas a menudo requiere cierta intuición de cómo podemos cuantificar el parámetro de orden de una fase. Los algoritmos de ML pueden imitar algo similar a la intuición al inferir conocimientos a partir de datos de ejemplo. Por lo tanto, pueden descubrir patrones que son invisibles para el ojo humano, lo que los convierte en excelentes candidatos para estudiar las transiciones de fase. Al mismo tiempo, se sabe que los dispositivos cuánticos pueden realizar algunas tareas computacionales exponencialmente más rápido que los ordenadores clásicos y pueden producir patrones de datos que son difíciles de simular en los ordenadores clásicos. Por lo tanto, existe la esperanza de que los algoritmos ML que se ejecutan en dispositivos cuánticos muestren una ventaja sobre su analógico clásico. Estudiamos dos caminos diferentes a lo largo de la vanguardia del ML y la física cuántica. Por un lado, estudiamos el uso de redes neuronales (neural network, NN) para clasificar las fases de la materia en sistemas cuánticos de muchos cuerpos. Por otro lado, estudiamos los algoritmos ML que se ejecutan en ordenadores cuánticos. La conexión entre ML para la física cuántica y la física cuántica para ML en esta tesis es un subárea emergente en ML: la interpretabilidad de los algoritmos de aprendizaje. Un ingrediente crucial en el estudio de las transiciones de fase con NN es una mejor comprensión de las predicciones de la NN, para inferir un modelo del sistema cuántico. Así pues, la interpretabilidad de la NN puede ayudarnos en este esfuerzo. El estudio de la interpretabilitad inspiró además un estudio en profundidad de la pérdida de aplicaciones de aprendizaje automático cuántico (quantum machine learning, QML) que también discutiremos. En esta tesis damos respuesta a las preguntas de cómo podemos aprovechar las NN para clasificar las fases de la materia y utilizamos un método que permite hacer una adaptación de dominio para transferir la "intuición" aprendida de sistemas sin ruido a sistemas con ruido. Para mapear el diagrama de fase de los sistemas cuánticos de muchos cuerpos de una manera totalmente no supervisada, estudiamos un método conocido de detección de anomalías que nos permite reducir la entrada humana al mínimo. También usaremos métodos de interpretabilidad para estudiar las NN que están entrenadas para distinguir fases de la materia para comprender si las NN están aprendiendo algo similar a un parámetro de orden y si su forma de aprendizaje puede ser más accesible para los humanos. Y finalmente, inspirados por la interpretabilidad de las NN clásicas, desarrollamos herramientas para estudiar los paisajes de pérdida de los circuitos cuánticos variacionales para identificar posibles diferencias entre los algoritmos ML clásicos y cuánticos que podrían aprovecharse para obtener una ventaja cuántica.
Cardamone, Dario. "Support Vector Machine a Machine Learning Algorithm". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Encontre o texto completo da fonteKent, W. F. "Machine learning for parameter identification of electric induction machines". Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399178.
Texto completo da fonteMenke, Joshua E. "Improving machine learning through oracle learning /". Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1726.pdf.
Texto completo da fonteLivros sobre o assunto "Machine learning"
Zhou, Zhi-Hua. Machine Learning. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1967-3.
Texto completo da fonteJung, Alexander. Machine Learning. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8193-6.
Texto completo da fonteMitchell, Tom M., Jaime G. Carbonell e Ryszard S. Michalski. Machine Learning. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2279-5.
Texto completo da fonteFernandes de Mello, Rodrigo, e Moacir Antonelli Ponti. Machine Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94989-5.
Texto completo da fonteBell, Jason. Machine Learning. Indianapolis, IN, USA: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781119183464.
Texto completo da fonteHuang, Kaizhu, Haiqin Yang, Irwin King e Michael Lyu. Machine Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79452-3.
Texto completo da fonteJebara, Tony. Machine Learning. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9011-2.
Texto completo da fonteVorobeychik, Yevgeniy, e Murat Kantarcioglu. Adversarial Machine Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01580-9.
Texto completo da fonteChen, Zhiyuan, e Bing Liu. Lifelong Machine Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01581-6.
Texto completo da fonteTsihrintzis, George A., Dionisios N. Sotiropoulos e Lakhmi C. Jain, eds. Machine Learning Paradigms. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-94030-4.
Texto completo da fonteCapítulos de livros sobre o assunto "Machine learning"
Wehenkel, Louis A. "Machine Learning". In Automatic Learning Techniques in Power Systems, 99–144. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5451-6_5.
Texto completo da fonteCios, Krzysztof J., Witold Pedrycz e Roman W. Swiniarski. "Machine Learning". In Data Mining Methods for Knowledge Discovery, 229–308. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5589-6_6.
Texto completo da fonteSchuld, Maria, e Francesco Petruccione. "Machine Learning". In Quantum Science and Technology, 21–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96424-9_2.
Texto completo da fonteDinsmore, Thomas W. "Machine Learning". In Disruptive Analytics, 169–98. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-1311-7_8.
Texto completo da fonteYao, Xin, e Yong Liu. "Machine Learning". In Search Methodologies, 477–517. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6940-7_17.
Texto completo da fonteBen-Ari, Mordechai, e Francesco Mondada. "Machine Learning". In Elements of Robotics, 221–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62533-1_14.
Texto completo da fonteKwok, James T., Zhi-Hua Zhou e Lei Xu. "Machine Learning". In Springer Handbook of Computational Intelligence, 495–522. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-43505-2_29.
Texto completo da fonteCobia, Derin. "Machine Learning". In Encyclopedia of Clinical Neuropsychology, 2058–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_9058.
Texto completo da fonteZielesny, Achim. "Machine Learning". In Intelligent Systems Reference Library, 221–380. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21280-2_4.
Texto completo da fonteCamastra, Francesco, e Alessandro Vinciarelli. "Machine Learning". In Advanced Information and Knowledge Processing, 99–106. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6735-8_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Machine learning"
Kozhenkov, A., E. Z. Naeini e K. Prindle. "Machine Learning and Learning from Machines". In Progress’19. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201953052.
Texto completo da fonteChaudhuri, Arjun, Jonti Talukdar e Krishnendu Chakrabarty. "Machine Learning for Testing Machine-Learning Hardware". In ICCAD '22: IEEE/ACM International Conference on Computer-Aided Design. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3508352.3561121.
Texto completo da fonte"Machine learning". In 2015 International Symposium on Advanced Computing and Communication (ISACC). IEEE, 2015. http://dx.doi.org/10.1109/isacc.2015.7377313.
Texto completo da fonteMitrofanova, A. S., e G. V. Komlev. "Machine learning". In ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ. НИЦ «Л-Журнал», 2018. http://dx.doi.org/10.18411/lj-11-2018-180.
Texto completo da fonte"Machine Learning". In 2019 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2019. http://dx.doi.org/10.1109/iwssip.2019.8787334.
Texto completo da fonteYoung, Ramsey, e Jonathan Ringenberg. "Machine Learning". In SIGCSE '19: The 50th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3287324.3293806.
Texto completo da fonteMohammed, Hadi, Ibrahim A. Hameed e Razak Seidu. "Machine learning". In GECCO '18: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3205651.3208235.
Texto completo da fonte"Machine Learning". In 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2022. http://dx.doi.org/10.1109/iwssip55020.2022.9854395.
Texto completo da fonteJordan, Michael I. "Machine learning". In TURC 2018: ACM Turing Celebration Conference - China. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3210713.3210718.
Texto completo da fonteHan, DongYeob. "Crack detection of UAV concrete surface images". In Applications of Machine Learning, editado por Michael E. Zelinski, Tarek M. Taha, Jonathan Howe, Abdul A. Awwal e Khan M. Iftekharuddin. SPIE, 2019. http://dx.doi.org/10.1117/12.2525174.
Texto completo da fonteRelatórios de organizações sobre o assunto "Machine learning"
Vesselinov, Velimir Valentinov. Machine Learning. Office of Scientific and Technical Information (OSTI), janeiro de 2019. http://dx.doi.org/10.2172/1492563.
Texto completo da fonteValiant, L. G. Machine Learning. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1993. http://dx.doi.org/10.21236/ada283386.
Texto completo da fonteChase, Melissa P. Machine Learning. Fort Belvoir, VA: Defense Technical Information Center, abril de 1990. http://dx.doi.org/10.21236/ada223732.
Texto completo da fonteKagie, Matthew J., e Park Hays. FORTE Machine Learning. Office of Scientific and Technical Information (OSTI), agosto de 2016. http://dx.doi.org/10.2172/1561828.
Texto completo da fonteLin, Youzuo, Shihang Feng e Esteban Rougier. Machine Learning Tutorial. Office of Scientific and Technical Information (OSTI), julho de 2022. http://dx.doi.org/10.2172/1876777.
Texto completo da fonteVassilev, Apostol. Adversarial Machine Learning:. Gaithersburg, MD: National Institute of Standards and Technology, 2024. http://dx.doi.org/10.6028/nist.ai.100-2e2023.
Texto completo da fonteKelly, Bryan, e Dacheng Xiu. Financial Machine Learning. Cambridge, MA: National Bureau of Economic Research, julho de 2023. http://dx.doi.org/10.3386/w31502.
Texto completo da fonteCaplin, Andrew, Daniel Martin e Philip Marx. Modeling Machine Learning. Cambridge, MA: National Bureau of Economic Research, outubro de 2022. http://dx.doi.org/10.3386/w30600.
Texto completo da fonteChristie, Lorna. Interpretable machine learning. Parliamentary Office of Science and Technology, outubro de 2020. http://dx.doi.org/10.58248/pn633.
Texto completo da fonteLin, Youzuo. Machine Learning in Subsurface. Office of Scientific and Technical Information (OSTI), agosto de 2018. http://dx.doi.org/10.2172/1467315.
Texto completo da fonte