Literatura científica selecionada sobre o tema "Lysosomal storage diseases"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Lysosomal storage diseases".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Lysosomal storage diseases":

1

Xu, Miao, Ke Liu, Manju Swaroop, Wei Sun, Seameen J. Dehdashti, John C. McKew e Wei Zheng. "A Phenotypic Compound Screening Assay for Lysosomal Storage Diseases". Journal of Biomolecular Screening 19, n.º 1 (27 de agosto de 2013): 168–75. http://dx.doi.org/10.1177/1087057113501197.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The lysosome is a vital cellular organelle that primarily functions as a recycling center for breaking down unwanted macromolecules through a series of hydrolases. Functional deficiencies in lysosomal proteins due to genetic mutations have been found in more than 50 lysosomal storage diseases that exhibit characteristic lipid/macromolecule accumulation and enlarged lysosomes. Recently, the lysosome has emerged as a new therapeutic target for drug development for the treatment of lysosomal storage diseases. However, a suitable assay for compound screening against the diseased lysosomes is currently unavailable. We have developed a Lysotracker staining assay that measures the enlarged lysosomes in patient-derived cells using both fluorescence intensity readout and fluorescence microscopic measurement. This phenotypic assay has been tested in patient cells obtained from several lysosomal storage diseases and validated using a known compound, methyl-β-cyclodextrin, in primary fibroblast cells derived from Niemann Pick C disease patients. The results demonstrate that the Lysotracker assay can be used in compound screening for the identification of lead compounds that are capable of reducing enlarged lysosomes for drug development.
2

Schulze, M., S. Groeschel, J. Gburek-Augustat, T. Nägele e M. Horger. "Lysosomal Storage Diseases – Lysosomale Speichererkrankungen". RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 187, n.º 12 (26 de novembro de 2015): 1057–60. http://dx.doi.org/10.1055/s-0035-1552368.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Simonaro, Calogera M. "Lysosomes, Lysosomal Storage Diseases, and Inflammation". Journal of Inborn Errors of Metabolism and Screening 4 (14 de maio de 2016): 232640981665046. http://dx.doi.org/10.1177/2326409816650465.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Breiden, Bernadette, e Konrad Sandhoff. "Lysosomal Glycosphingolipid Storage Diseases". Annual Review of Biochemistry 88, n.º 1 (20 de junho de 2019): 461–85. http://dx.doi.org/10.1146/annurev-biochem-013118-111518.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Glycosphingolipids are cell-type-specific components of the outer leaflet of mammalian plasma membranes. Gangliosides, sialic acid–containing glycosphingolipids, are especially enriched on neuronal surfaces. As amphi-philic molecules, they comprise a hydrophilic oligosaccharide chain attached to a hydrophobic membrane anchor, ceramide. Whereas glycosphingolipid formation is catalyzed by membrane-bound enzymes along the secretory pathway, degradation takes place at the surface of intralysosomal vesicles of late endosomes and lysosomes catalyzed in a stepwise fashion by soluble hydrolases and assisted by small lipid-binding glycoproteins. Inherited defects of lysosomal hydrolases or lipid-binding proteins cause the accumulation of undegradable material in lysosomal storage diseases (GM1 and GM2 gangliosidosis; Fabry, Gaucher, and Krabbe diseases; and metachromatic leukodystrophy). The catabolic processes are strongly modified by the lipid composition of the substrate-carrying membranes, and the pathological accumulation of primary storage compounds can trigger an accumulation of secondary storage compounds (e.g., small glycosphingolipids and cholesterol in Niemann-Pick disease).
5

Ferreira, Carlos R., e William A. Gahl. "Lysosomal storage diseases". Translational Science of Rare Diseases 2, n.º 1-2 (25 de maio de 2017): 1–71. http://dx.doi.org/10.3233/trd-160005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Rose Georgy, Smitha. "Lysosomal storage diseases". Journal of Veterinary and Animal Sciences 52, n.º 1 (1 de janeiro de 2021): 1–6. http://dx.doi.org/10.51966/jvas.2021.52.1.1-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Neufeld, Elizabeth F. "Lysosomal Storage Diseases". Annual Review of Biochemistry 60, n.º 1 (junho de 1991): 257–80. http://dx.doi.org/10.1146/annurev.bi.60.070191.001353.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Alroy, Joseph, e Jeremiah A. Lyons. "Lysosomal Storage Diseases". Journal of Inborn Errors of Metabolism and Screening 2 (7 de março de 2014): 232640981351766. http://dx.doi.org/10.1177/2326409813517663.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Richtsfeld, Martina, e Kumar G. Belani. "Lysosomal Storage Diseases". Anesthesia & Analgesia 125, n.º 3 (setembro de 2017): 716–18. http://dx.doi.org/10.1213/ane.0000000000001887.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gieselmann, Volkmar. "Lysosomal storage diseases". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1270, n.º 2-3 (abril de 1995): 103–36. http://dx.doi.org/10.1016/0925-4439(94)00075-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Lysosomal storage diseases":

1

Roy, Elise. "Cell disorders in lysosomal storage diseases". Phd thesis, Université René Descartes - Paris V, 2012. http://tel.archives-ouvertes.fr/tel-00683248.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Mucopolysaccharidosis type IIIB (MPSIIIB) is a lysosomal storage disease (LSD) characterized by accumulation of heparan sulfate oligosaccharides (HSO), which results in progressive mental retardation, neurodegeneration and premature death in children. The underlying mechanisms are poorly understood. Coming to a better understanding of the pathophysiology of MPSIIIB has become a necessity to assess the efficacy of gene therapy treatment regarding loss of neuronal plasticity, and to define the best conditions for treatment. To address the link between HSO accumulation and downstream pathological events, new cell models of MPSIIIB were created. First, induced pluripotent stem cells (iPSc) were generated from fibroblasts of affected children, followed by differentiation of patient-derived iPSc into a neuronal progeny. Second, a HeLa cell model was created in which expression of shRNAs directed against a-N-acetylglucosaminidase (NAGLU), the deficient enzyme in MPSIIIB, is induced by tetracycline. Success in the isolation of these different models was pointed by the presence of cardinal features of MPSIIIB cell pathology. Studies in these models showed that: I) HSO excreted in the extracellular matrix modifies cell perception of environmental cues, affecting downstream signalling pathways with consequences on the Golgi morphology. II) Accumulation of intracellular storage vesicles, a hallmark of LSDs is due to overexpression of the cis-Golgi protein GM130 and subsequent Golgi alterations. It is likely that these vesicles are abnormal lysosomes formed in the cis- and medial-Golgi which are misrouted at an early step of lysosome biogenesis, giving rise to a dead-end compartment. III) Other cell functions controlled by GM130 are affected, including centrosome morphology and microtubule nucleation. These data point to possible consequences on cell polarization, cell migration and neuritogenesis.
2

Chen, Chun-Wu. "Defective iron homeostasis in lysosomal storage diseases". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:5127c241-be64-4990-bef5-70e15d391394.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Niemann-Pick type Cl (NPC1) disease is a neurodegenerative lysosomal storage disorder characterized by the accumulation of multiple lipids in the late endosome/lysosomal system and reduced acidic store calcium levels. Since the lysosomal system is involved in regulating aspects of transition metal ion homeostasis and its intracellular compartmentalization, we have investigated whether there are metal ion metabolism defects and haematological abnormalities in NPC1 disease. We have identified multiple haematological changes, including decreased haematocrit, haemoglobin and mean corpuscular haemoglobin volume in mice.
3

Ross, Colin J. D. "Immuno-isolation gene therapy for lysosomal storage disease /". *McMaster only, 2001.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Rigal, Nathalie [Verfasser]. "Improving enzyme replacement therapy for lysosomal storage diseases / Nathalie Rigal". Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2018. http://d-nb.info/115576093X/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Lewis, Martin David. "Human lysosomal sulphate transport". Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phl6752.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Addendum inserted at back Includes bibliographical references (leaves 266-287). 1. Introduction -- 2. Materials and general methods -- 3. Characterisation and partial purification of the lysosomal sulphate transporter -- 4. Identification of proteins involved in lysosomal sulphate transport -- 5. The relationship between a sulphate anion transporter family and the lysosomal sulphate transporter -- 6. Investigation of sulphate transport in human skin fibroblasts -- 7. Concluding remarks
6

Kanju, Patrick M. Suppiramaniam Vishnu. "Synaptic glutamate receptor dysfunction in tissue and animal models of Alzheimer's disease". Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Summer/doctoral/KANJU_PATRICK_11.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Champigny, Marc J. Igdoura Suleiman. "Transcriptional regulation of neu1 expression: Implications for lysosomal storage disease /". *McMaster only, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Maalouf, Katia Ghandour [Verfasser]. "Role of lipid rafts in the pathophysiology of lysosomal storage diseases / Katia Ghandour Maalouf". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://nbn-resolving.de/urn:nbn:de:gbv:089-7259318337.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ghandour, Maalouf Katia [Verfasser]. "Role of lipid rafts in the pathophysiology of lysosomal storage diseases / Katia Ghandour Maalouf". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2012. http://d-nb.info/1029515352/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gray, James Andrew Russell. "Modulating the heat-shock response : a potential therapy for lysosomal storage disorders". Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:d9b746c9-9026-4a6e-97b5-00bb848100d7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Lysosomal storage disorders (LSDs) comprise a broad disease group of inherited metabolic disorders, the majority of which are associated with CNS pathology, significant disability and reductions in life expectancy. LSDs are caused by mutations in genes encoding proteins critical for the correct functioning of lysosomal homeostasis. The disruption of lysosomal homeostasis results in the abnormal accumulation of lysosomal content, initiating intracellular pathological events, including calcium dysregulation and lysosomal membrane permeablisation (LMP) affecting cell function and inducing cellular death mechanisms. These pathological events are particularly damaging within the CNS, due to its limited capacity for regeneration. Despite intensive scientific research into these disorders, and an increased understanding of the pathological events underlying these diseases, effective treatments are still lacking for most LSDs. Several therapeutic approaches have been investigated in the last 30 years, including enzyme replacement therapy, bone marrow transplantation, substrate reduction therapy, chemical chaperones and gene therapy. However, the CNS pathology in many of the LSDs remains unaddressed due to the restricted ability of many therapeutic agents to cross the blood-brain barrier. The heat-shock response (HSR) is an emerging element involved in the pathogenesis of a variety of disorders. The HSR is a physiological response to a wide range of cellular stresses. It functions to protect the cell from the aggregation of misfolded proteins and LMP. Of the HSR, several key players are integral to mounting a heat shock response, these include the heat-shock factor 1 (HSF-1) and HSP70. In this thesis, we provide proof-of-principle for the use of recombinant HSP70, and the small molecule up-regulator of the HSR, arimoclomol in treatment of a range of LSDs. We show that HSP70 is able to access the CNS, and increase the degradative capacity of lysosomal hydrolases. This provides differential behavioural, biochemical and survival effects in LSD models of Niemann-Pick type C, Sandhoff and Fabry disease. Additional studies using the HSF-1 upregulator arimoclomol, show a complex dose-response between the different models, possibly reflecting essential differences in the calcium dysregulation between these disease states.

Livros sobre o assunto "Lysosomal storage diseases":

1

A, Barranger John, e Cabrera-Salazar Mario A, eds. Lysosomal storage disorders. New York: Springer, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

A, Barranger John, e Cabrera-Salazar Mario A, eds. Lysosomal storage disorders. New York: Springer, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mehta, Atul B., e Bryan Winchester. Lysosomal storage disorders: A practical guide. Chichester, West Sussex: Wiley-Blackwell, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mononen, Ilkka. Lysosomal storage disease--aspartylglycosaminuria. New York: Springer, 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Pastores, Gregory M. Lysosomal storage disorders: Principles and practice. Singapore: World Scientific, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Surendran, Sankar. Neurochemistry of metabolic diseases: Lysosomal storage diseases, phenylketonuria, and Canavan disease. New York: Nova Science Publishers, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Boelens, Jaap Jan, e Robert Wynn, eds. Stem Cell Therapy in Lysosomal Storage Diseases. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8357-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Watts, R. W. E. Lysosomal storage diseases: Biochemical and clinical aspects. London: Taylor & Francis, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

G, Thoene Jess, ed. Pathophysiology of lysosomal transport. Boca Raton: CRC Press, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Al-Essa, Mohammed A. Atlas of common lysosomal and peroxisomal disorders. Riyadh, Saudi Arabia: Scientific Informations Office, Research Centre, King Faisal Specialist Hospital and Research Centre, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Lysosomal storage diseases":

1

Ozand, Pinar T., e Mohammed Al-Essa. "Lysosomal Storage Diseases". In Textbook of Clinical Pediatrics, 515–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-02202-9_39.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ferns, Janis M., e Stephen H. Halpern. "Lysosomal Storage Diseases". In Consults in Obstetric Anesthesiology, 357–60. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-59680-8_98.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Pastores, Gregory M. "Lysosomal Storage Diseases". In Neurochemical Mechanisms in Disease, 785–97. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7104-3_23.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Imam, Ibrahim. "Lysosomal storage diseases". In 700 Essential Neurology Checklists, 335–37. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003221258-99.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Winchester, Bryan. "Classification of Lysosomal Storage Diseases". In Lysosomal Storage Disorders, 37–46. Oxford: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118514672.ch5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

O'Rourke, Erin, Dawn Laney, Cindy Morgan, Kim Mooney e Jennifer Sullivan. "Genetic Counseling for Lysosomal Storage Diseases". In Lysosomal Storage Disorders, 179–95. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-70909-3_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kent, Alastair, Christine Lavery e Jeremy Manuel. "The Patient Perspective on Rare Diseases". In Lysosomal Storage Disorders, 186–92. Oxford: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118514672.ch24.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Winchester, Bryan. "Laboratory Diagnosis of Lysosomal Storage Diseases". In Lysosomal Storage Disorders, 20–28. Oxford: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118514672.ch3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Brady, Roscoe O. "The Concept of Treatment in Lysosomal Storage Diseases". In Lysosomal Storage Disorders, 37–43. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-70909-3_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

de Duve, Christian. "From Lysosomes to Storage Diseases and Back: A Personal Reminiscence". In Lysosomal Storage Disorders, 1–5. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-70909-3_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Lysosomal storage diseases":

1

Krželj, Vjekoslav, e Ivana Čulo Čagalj. "INHERITED METABOLIC DISORDERS AND HEART DISEASES". In Symposium with International Participation HEART AND … Akademija nauka i umjetnosti Bosne i Hercegovine, 2019. http://dx.doi.org/10.5644/pi2019.181.02.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Inherited metabolic disorders can cause heart diseases, cardiomyopathy in particular, as well as cardiac arrhythmias, valvular and coronary diseases. More than 40 different inherited metabolic disorders can provoke cardiomyopathy, including lysosomal storage disorders, fatty acid oxidation defects, organic acidemias, amino acidopathies, glycogen storage diseases, congenital disorders of glycosylation as well as peroxisomal and mitochondrial disorders. If identified and diagnosed on time, some of congenital metabolic diseases could be successfully treated. It is important to assume them in cases when heart diseases are etiologically undefined. Rapid technological development has made it easier to establish the diagnosis of these diseases. This article will focus on common inherited metabolic disorders that cause heart diseases, as well as on diseases that might be possible to treat.
2

Medina, Diego. "Combining high-content imaging and repurposing of approved drugs to tackle lysosomal storage diseases". In Optical Methods for Inspection, Characterization, and Imaging of Biomaterials VI, editado por Pietro Ferraro, Simonetta Grilli e Demetri Psaltis. SPIE, 2023. http://dx.doi.org/10.1117/12.2675267.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Alblooshi, Afaf, Abdul-Kader Souid e Fatma Al Jasmi. "The Usefulness of Forced Oscillation Technique to assess lung functions in Patients with Lysosomal Storage Diseases". In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa2413.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Decker, Christine, Katharina Kranz, Kristine Adam, Charlotte Thiels, Cornelia Köhler e Thomas Lücke. "P 326. Developments in Stem Cell Transplantation in Lysosomal Storage Diseases—An Update on the Example of Mucopolysaccharidoses". In Abstracts of the 44th Annual Meeting of the Society for Neuropediatrics. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1676012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Guimarães, Matheus Procópio, Isabella Cristina Muniz Honorato, Diógenes Emanuel Dantas da Silva, Lucca Ferdinando Queiroz Fernandes, Pedro Henrick Guimarães Carvalho, Iury Hélder Santos Dantas e Bianca Etelvina Santos de Oliveira. "A 26-year-old woman presenting with a history of epileptic crisis, ataxia and cognitive impairment". In XIV Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2023. http://dx.doi.org/10.5327/1516-3180.141s1.645.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
A 26-year-old woman was referred to a neurology outpatient clinic due to a 9-month history of generalized tonic-clonic seizures, gradually more frequent since onset. She additionally reports developing insidiously over four years ago, an asymmetrical tremor in the upper limbs (worse on the right hand), difficulty walking, speech disorders and decreased visual acuity on the right eye. She had a past medical history of major depressive disorder, but normal neuropsychomotor development in childhood, and did not drink alcohol or smoke tobacco. There is no family history of neurological conditions (she has three brothers and two healthy children). She reports consanguinity (maternal grandparents). Upon neurological examination, the patient was alert, attention was impaired and was not oriented to place or time. Speech was scanned. Her visual acuity was decreased in the right eye (20/100), right gaze-evoked nystagmus and slow saccades. Fundi in both eyes were normal and examination of the other cranial nerves was unremarkable. Based on Medical Research Council grading, the patient had a power of 5/5 in all muscle groups of the lower and upper limbs, deep tendon reflexes in upper limbs were brisk, normal in lower limbs, and plantar responses were flexor bilaterally. Sensory exam was also unremarkable in all four limbs. Appendicular ataxia was present in all members, with rest and intention tremor in upper limbs. During gait she had a noticeable widened base, and steps were unsteady and irregular. Meningismus was absent. A minimental exam was done: 21/30 (eight years of study), with impairment mainly in attention, language and planning. Routine blood tests including full blood count, fasting glucose, B12 level, renal profile, electrolytes, liver function tests, C- reactive protein, serum protein electrophoresis, thyroid function test and erythrocyte sedimentation rate were normal. Serologic tests for syphilis (venereal disease research laboratory), viral hepatitis B and C, and HIV serology were negative. Cerebrospinal fluid analysis showed 01 white blood cell/L, protein 32, glucose 68 mg/dL and absence of oligoclonal bands. Magnetic resonance imaging (MRI) sequences showed significant cerebellar atrophy. Electroencephalogram was normal. A genetic panel was done which shows a mutation on TPP1 gene, compatible with neuronal ceroid lipofuscinosis-2 (CLN-2, OMIM #204500). Neuronal ceroid lipofuscinosis (CLN) is a progressive neurodegenerative lysosomal storage disease caused by the accumulation of lipofuscin in the cerebellum and cerebral cortex, which results in neuronal death. There is an estimated incidence of < 0.5 per 100,000 live births in Europe; in Brazil its prevalence is unknown. With the identification of molecular defects, the CLNs are classified according to the underlying gene defect, regardless of the age at onset. CLN2 is caused by a deficiency of the tripeptidyl peptidase 1 (TPP1) enzyme secondary to mutations in the CLN2 gene, being the most prevalent type observed and the only treatable one. The clinical course includes refractory epilepsy to antiepileptic medications, progressive mental regression and deterioration, ataxia, myoclonus, and visual loss. On MRI, most patients have diffuse cerebellar atrophy, corroborating the clinical finding of central nervous system progressive degeneration.

Vá para a bibliografia