Artigos de revistas sobre o tema "Lungs Inflammation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Lungs Inflammation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kumar, Rajiv. "SARS-CoV-2, Inflammation, Allergy of the Lungs and Nanotherapeutics". International Journal of Clinical Case Reports and Reviews 11, n.º 1 (4 de abril de 2022): 01–02. http://dx.doi.org/10.31579/2690-4861/208.
Texto completo da fonteLe, Nguyen Phuong Khanh, Shankaramurthy Channabasappa, Mokarram Hossain, Lixin Liu e Baljit Singh. "Leukocyte-specific protein 1 regulates neutrophil recruitment in acute lung inflammation". American Journal of Physiology-Lung Cellular and Molecular Physiology 309, n.º 9 (1 de novembro de 2015): L995—L1008. http://dx.doi.org/10.1152/ajplung.00068.2014.
Texto completo da fonteLorenzo, Erica, Jacob Hopkins, Julie Lefebvre e Laura Haynes. "Vaccination does not protect aged mice from influenza-induced lung inflammation (VAC9P.1062)". Journal of Immunology 194, n.º 1_Supplement (1 de maio de 2015): 145.2. http://dx.doi.org/10.4049/jimmunol.194.supp.145.2.
Texto completo da fonteSmall, Donna M., Ryan R. Brown, Declan F. Doherty, Anthony Abladey, Zhe Zhou-Suckow, Rebecca J. Delaney, Lauren Kerrigan et al. "Targeting of cathepsin S reduces cystic fibrosis-like lung disease". European Respiratory Journal 53, n.º 3 (17 de janeiro de 2019): 1801523. http://dx.doi.org/10.1183/13993003.01523-2018.
Texto completo da fonteRamos-Ramírez, Patricia, Carina Malmhäll, Kristina Johansson, Mikael Adner, Jan Lötvall e Apostolos Bossios. "Lung Regulatory T Cells Express Adiponectin Receptor 1: Modulation by Obesity and Airway Allergic Inflammation". International Journal of Molecular Sciences 21, n.º 23 (26 de novembro de 2020): 8990. http://dx.doi.org/10.3390/ijms21238990.
Texto completo da fonteChapoval, Svetlana P., Ann E. Kelly-Welch, Elizabeth Smith e Achsah D. Keegan. "Complex role of STAT6 in allergic airway inflammation (39.11)". Journal of Immunology 178, n.º 1_Supplement (1 de abril de 2007): S27. http://dx.doi.org/10.4049/jimmunol.178.supp.39.11.
Texto completo da fonteHerbein, Joel F., e Jo Rae Wright. "Enhanced clearance of surfactant protein D during LPS-induced acute inflammation in rat lung". American Journal of Physiology-Lung Cellular and Molecular Physiology 281, n.º 1 (1 de julho de 2001): L268—L277. http://dx.doi.org/10.1152/ajplung.2001.281.1.l268.
Texto completo da fonteAhn, So Yoon, Dong Kyung Sung, Yun Sil Chang e Won Soon Park. "Intratracheal Transplantation of Mesenchymal Stem Cells Attenuates Hyperoxia-Induced Microbial Dysbiosis in the Lungs, Brain, and Gut in Newborn Rats". International Journal of Molecular Sciences 23, n.º 12 (13 de junho de 2022): 6601. http://dx.doi.org/10.3390/ijms23126601.
Texto completo da fonteMarín-Corral, Judith, Leticia Martínez-Caro, José A. Lorente, Marta de Paula, Lara Pijuan, Nicolas Nin, Joaquim Gea, Andrés Esteban e Esther Barreiro. "Redox Balance and Cellular Inflammation in the Diaphragm, Limb Muscles, and Lungs of Mechanically Ventilated Rats". Anesthesiology 112, n.º 2 (1 de fevereiro de 2010): 384–94. http://dx.doi.org/10.1097/aln.0b013e3181c38bed.
Texto completo da fonteBai, Jing, Shi-Lin Qiu, Xiao-Ning Zhong, Qiu-Ping Huang, Zhi-Yi He, Jian-Quan Zhang, Guang-Nan Liu, Mei-Hua Li e Jing-Min Deng. "Erythromycin EnhancesCD4+Foxp3+Regulatory T-Cell Responses in a Rat Model of Smoke-Induced Lung Inflammation". Mediators of Inflammation 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/410232.
Texto completo da fonteMarkovic, N., L. A. McCaig, J. Stephen, S. Mizuguchi, R. A. W. Veldhuizen, J. F. Lewis e G. Cepinskas. "Mediators released from LPS-challenged lungs induce inflammatory responses in liver vascular endothelial cells and neutrophilic leukocytes". American Journal of Physiology-Gastrointestinal and Liver Physiology 297, n.º 6 (dezembro de 2009): G1066—G1076. http://dx.doi.org/10.1152/ajpgi.00278.2009.
Texto completo da fontede Prost, Nicolas, Eduardo L. Costa, Tyler Wellman, Guido Musch, Tilo Winkler, Mauro R. Tucci, R. Scott Harris, Jose G. Venegas e Marcos F. Vidal Melo. "Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation". Journal of Applied Physiology 111, n.º 5 (novembro de 2011): 1249–58. http://dx.doi.org/10.1152/japplphysiol.00311.2011.
Texto completo da fonteGoenharto, Sianiwati, I. Ketut Sudiana, Sherman Salim, Elly Rusdiana e Sri Wahjuni. "Inflammation in the lungs of mice due to methyl methacrylate exposure". February-2020 13, n.º 2 (2020): 256–60. http://dx.doi.org/10.14202/vetworld.2020.256-260.
Texto completo da fonteVrolyk, V., B. K. Wobeser, A. N. Al-Dissi, A. Carr e B. Singh. "Lung Inflammation Associated With Clinical Acute Necrotizing Pancreatitis in Dogs". Veterinary Pathology 54, n.º 1 (30 de setembro de 2016): 129–40. http://dx.doi.org/10.1177/0300985816646432.
Texto completo da fonteBabić, Rade, Gordana Stanković-Babić, Strahinja Babić, Aleksandra Marjanović, Nenad Govedarović e Nevena Babić. "X-ray aspects of lung inflammation COVID-19". Medicinska rec 1, n.º 3 (2020): 127–35. http://dx.doi.org/10.5937/medrec2003127b.
Texto completo da fonteSadykova, Gulora A., Kh U. Rakhmatullaev, R. Sh Mavlyan-Khodjaev, Z. S. Zalyalova e Yu Kh Tadjikhodjaeva. "THE INFLUENCE OF OZONE THERAPY ON THE MORPHOLOGIC CHANGES IN THE PATIENTS PRESENTING WITH PURULENT INFLAMMATION OF THE LUNGS IN THE EXPERIMENT". Russian Journal of Physiotherapy, Balneology and Rehabilitation 16, n.º 3 (15 de junho de 2017): 137–40. http://dx.doi.org/10.18821/1681-3456-2017-16-3-137-140.
Texto completo da fonteLocke, Landon W., Mark B. Williams, Karen D. Fairchild, Min Zhong, Bijoy K. Kundu e Stuart S. Berr. "FDG-PET Quantification of Lung Inflammation with Image-Derived Blood Input Function in Mice". International Journal of Molecular Imaging 2011 (10 de dezembro de 2011): 1–6. http://dx.doi.org/10.1155/2011/356730.
Texto completo da fonteSavin, Innokenty A., Marina A. Zenkova e Aleksandra V. Sen’kova. "Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches". International Journal of Molecular Sciences 23, n.º 23 (29 de novembro de 2022): 14959. http://dx.doi.org/10.3390/ijms232314959.
Texto completo da fonteWilson, Carole L., Chi F. Hung e Lynn M. Schnapp. "Endotoxin-induced acute lung injury in mice with postnatal deletion of nephronectin". PLOS ONE 17, n.º 5 (12 de maio de 2022): e0268398. http://dx.doi.org/10.1371/journal.pone.0268398.
Texto completo da fonteThatcher, T. H., N. A. McHugh, R. W. Egan, R. W. Chapman, J. A. Hey, C. K. Turner, M. R. Redonnet, K. E. Seweryniak, P. J. Sime e R. P. Phipps. "Role of CXCR2 in cigarette smoke-induced lung inflammation". American Journal of Physiology-Lung Cellular and Molecular Physiology 289, n.º 2 (agosto de 2005): L322—L328. http://dx.doi.org/10.1152/ajplung.00039.2005.
Texto completo da fonteCohen, Pazit Y., Raphael Breuer, Philip Zisman e Shulamit B. Wallach-Dayan. "Bleomycin-Treated Chimeric Thy1-Deficient Mice with Thy1-Deficient Myofibroblasts and Thy-Positive Lymphocytes Resolve Inflammation without Affecting the Fibrotic Response". Mediators of Inflammation 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/942179.
Texto completo da fonteFales-Williams, A. J., K. A. Brogden, E. Huffman, J. M. Gallup e M. R. Ackermann. "Cellular Distribution of Anionic Antimicrobial Peptide in Normal Lung and during Acute Pulmonary Inflammation". Veterinary Pathology 39, n.º 6 (novembro de 2002): 706–11. http://dx.doi.org/10.1354/vp.39-6-706.
Texto completo da fonteLéger, Caroline, Ai Ni, Graciela Andonegui, Josée Wong, Connie Mowat e Brent W. Winston. "Adenovirus-mediated gene transfer of hIGF-IB in mouse lungs induced prolonged inflammation but no fibroproliferation". American Journal of Physiology-Lung Cellular and Molecular Physiology 298, n.º 4 (abril de 2010): L492—L500. http://dx.doi.org/10.1152/ajplung.00310.2009.
Texto completo da fonteDuong, Chi, Huei Jiunn Seow, Steven Bozinovski, Peter J. Crack, Gary P. Anderson e Ross Vlahos. "Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice". American Journal of Physiology-Lung Cellular and Molecular Physiology 299, n.º 3 (setembro de 2010): L425—L433. http://dx.doi.org/10.1152/ajplung.00038.2010.
Texto completo da fonteLagasse, H. A. Daniel, e Alan Scott. "Lung macrophages control malaria-induced pulmonary inflammation (56.17)". Journal of Immunology 186, n.º 1_Supplement (1 de abril de 2011): 56.17. http://dx.doi.org/10.4049/jimmunol.186.supp.56.17.
Texto completo da fonteWang, Ping, Lin Zhang, Yanxia Liao, Juan Du, Mengying Xu, Wen Zhao, Shuxian Yin et al. "Effect of Intratracheal Instillation of ZnO Nanoparticles on Acute Lung Inflammation Induced by Lipopolysaccharides in Mice". Toxicological Sciences 173, n.º 2 (5 de dezembro de 2019): 373–86. http://dx.doi.org/10.1093/toxsci/kfz234.
Texto completo da fonteHogmalm, Anna, Maija Bry e Kristina Bry. "Pulmonary IL-1β expression in early life causes permanent changes in lung structure and function in adulthood". American Journal of Physiology-Lung Cellular and Molecular Physiology 314, n.º 6 (1 de junho de 2018): L936—L945. http://dx.doi.org/10.1152/ajplung.00256.2017.
Texto completo da fonteHellman, Urban, Mats G. Karlsson, Anna Engström-Laurent, Sara Cajander, Luiza Dorofte, Clas Ahlm, Claude Laurent e Anders Blomberg. "Presence of hyaluronan in lung alveoli in severe Covid-19: An opening for new treatment options?" Journal of Biological Chemistry 295, n.º 45 (25 de setembro de 2020): 15418–22. http://dx.doi.org/10.1074/jbc.ac120.015967.
Texto completo da fonteKunzmann, Steffen, Christian P. Speer, Alan H. Jobe e Boris W. Kramer. "Antenatal inflammation induced TGF-β1 but suppressed CTGF in preterm lungs". American Journal of Physiology-Lung Cellular and Molecular Physiology 292, n.º 1 (janeiro de 2007): L223—L231. http://dx.doi.org/10.1152/ajplung.00159.2006.
Texto completo da fonteZhang, Xinfu, Weiyu Zhao, Bin Li, Wenqing Li, Chengxiang Zhang, Xucheng Hou, Justin Jiang e Yizhou Dong. "Ratiometric fluorescent probes for capturing endogenous hypochlorous acid in the lungs of mice". Chemical Science 9, n.º 43 (2018): 8207–12. http://dx.doi.org/10.1039/c8sc03226b.
Texto completo da fontePapinska, Joanna Aleksandra, Grzegorz Gmyrek, R. Sathish Srinivasan, Umesh Deshmukh e Harini Bagavant. "Pulmonary involvement in a mouse model of Sjögren’s syndrome induced by activation of the STING pathway". Journal of Immunology 202, n.º 1_Supplement (1 de maio de 2019): 180.16. http://dx.doi.org/10.4049/jimmunol.202.supp.180.16.
Texto completo da fonteSingh, Ram Raj, e Isela Valera. "Plasmacytoid dendritic cells contribute to pro-inflammatory and pro-fibrotic milieu in lung fibrosis". Journal of Immunology 202, n.º 1_Supplement (1 de maio de 2019): 182.76. http://dx.doi.org/10.4049/jimmunol.202.supp.182.76.
Texto completo da fonteLibreros, Stephania, Ramon Garcia-Areas e Vijaya Iragavarapu. "Chitinase-3 like-protein-1 (CHI3L1) expression associated with pulmonary inflammation accelerates breast cancer metastasis (TUM7P.960)". Journal of Immunology 192, n.º 1_Supplement (1 de maio de 2014): 203.42. http://dx.doi.org/10.4049/jimmunol.192.supp.203.42.
Texto completo da fonteHardwick, Matthew J., Ming-Kai Chen, Kwamena Baidoo, Martin G. Pomper e Tomás R. Guilarte. "In Vivo Imaging of Peripheral Benzodiazepine Receptors in Mouse Lungs: A Biomarker of Inflammation". Molecular Imaging 4, n.º 4 (1 de outubro de 2005): 7290.2005.05133. http://dx.doi.org/10.2310/7290.2005.05133.
Texto completo da fonteTjota, Melissa, e Anne Sperling. "Activation of monocytes through FcRγ-signaling promotes IL-33-dependent migration into the lung interstitium (HYP7P.270)". Journal of Immunology 194, n.º 1_Supplement (1 de maio de 2015): 191.18. http://dx.doi.org/10.4049/jimmunol.194.supp.191.18.
Texto completo da fonteVakhidova, A. M. "EFFICACY OF LYMPHOTROPIC ADMINISTRATION OF BACTOX (AMOXICILIN) IN THE TREATMENT OF CHRONIC PNEUMONIA IN CHILDREN". American Journal of Medical Sciences and Pharmaceutical Research 04, n.º 02 (1 de fevereiro de 2022): 4–6. http://dx.doi.org/10.37547/tajmspr/volume04issue02-02.
Texto completo da fonteWoods, David F., Stephanie Flynn, Jose A. Caparrós-Martín, Stephen M. Stick, F. Jerry Reen e Fergal O’Gara. "Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung". Antibiotics 10, n.º 7 (24 de junho de 2021): 766. http://dx.doi.org/10.3390/antibiotics10070766.
Texto completo da fonteMaehara, Toko, e Ko Fujimori. "Inhibition of Prostaglandin F2α Receptors Exaggerates HCl-Induced Lung Inflammation in Mice". International Journal of Molecular Sciences 22, n.º 23 (27 de novembro de 2021): 12843. http://dx.doi.org/10.3390/ijms222312843.
Texto completo da fonteBajrami, Besnik, Haiyan Zhu, Hyun-Jeong Kwak, Subhanjan Mondal, Qingming Hou, Guangfeng Geng, Kutay Karatepe et al. "G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling". Journal of Experimental Medicine 213, n.º 10 (22 de agosto de 2016): 1999–2018. http://dx.doi.org/10.1084/jem.20160393.
Texto completo da fonteAbonia, J. Pablo, Jenny Hallgren, Tatiana Jones, Tong Shi, Yuhui Xu, Pandelakis Koni, Richard A. Flavell, Joshua A. Boyce, K. Frank Austen e Michael F. Gurish. "Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung". Blood 108, n.º 5 (1 de setembro de 2006): 1588–94. http://dx.doi.org/10.1182/blood-2005-12-012781.
Texto completo da fonteHart, David A., Francis Green, Paul Whidden, Jack Henkin e Donald E. Woods. "Exogenous rh-urokinase modifies inflammation and Pseudomonas aeruginosa infection in a rat chronic pulmonary infection model". Canadian Journal of Microbiology 39, n.º 12 (1 de dezembro de 1993): 1127–34. http://dx.doi.org/10.1139/m93-170.
Texto completo da fonteWang, Qin, Jianchun Wang, Mingdong Hu, Yu Yang, Liang Guo, Jing Xu, Chuanjiang Lei, Yan Jiao e JianCheng Xu. "Uncoupling Protein 2 Increases Susceptibility to Lipopolysaccharide-Induced Acute Lung Injury in Mice". Mediators of Inflammation 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/9154230.
Texto completo da fonteWong, Aaron, Ricardo Zamel, Jonathan Yeung, Gary D. Bader, Claudia C. Dos Santos, Xiaohui Bai, Yubo Wang, Shaf Keshavjee e Mingyao Liu. "Potential therapeutic targets for lung repair during human ex vivo lung perfusion". European Respiratory Journal 55, n.º 4 (14 de fevereiro de 2020): 1902222. http://dx.doi.org/10.1183/13993003.02222-2019.
Texto completo da fonteLopez, A., e R. Bildfell. "Pulmonary Inflammation Associated with Aspirated Meconium and Epithelial Cells in Calves". Veterinary Pathology 29, n.º 2 (março de 1992): 104–11. http://dx.doi.org/10.1177/030098589202900202.
Texto completo da fonteYuan, Zhihong, Mansoor Syed, Dipti Panchal, Myungsoo Joo, Chetna Bedi, Sokbee Lim, Hayat Onyuksel, Israel Rubinstein, Marco Colonna e Ruxana T. Sadikot. "TREM-1-accentuated lung injury via miR-155 is inhibited by LP17 nanomedicine". American Journal of Physiology-Lung Cellular and Molecular Physiology 310, n.º 5 (1 de março de 2016): L426—L438. http://dx.doi.org/10.1152/ajplung.00195.2015.
Texto completo da fonteNair, Meera. "The macrophage-derived proteins murine RELMα and human resistin regulate host immunity to helminth infection (MPF3P.801)". Journal of Immunology 192, n.º 1_Supplement (1 de maio de 2014): 132.1. http://dx.doi.org/10.4049/jimmunol.192.supp.132.1.
Texto completo da fonteKim, Tae Ho, Jun-Yong Choi, Kyun Ha Kim, Min Jung Kwun, Chang-Woo Han, Ran Won, Jung Ju Lee, Jong-In Kim e Myungsoo Joo. "Hominis placenta Suppresses Acute Lung Inflammation by Activating Nrf2". American Journal of Chinese Medicine 46, n.º 04 (janeiro de 2018): 801–17. http://dx.doi.org/10.1142/s0192415x18500428.
Texto completo da fontePreuss, Jonathan M., Ute Burret, Michael Gröger, Sandra Kress, Angelika Scheuerle, Peter Möller, Jan P. Tuckermann, Martin Wepler e Sabine Vettorazzi. "Impaired Glucocorticoid Receptor Signaling Aggravates Lung Injury after Hemorrhagic Shock". Cells 11, n.º 1 (30 de dezembro de 2021): 112. http://dx.doi.org/10.3390/cells11010112.
Texto completo da fonteLin, Hung-Jung, Chia-Ti Wang, Ko-Chi Niu, Chungjin Gao, Zhuo Li, Mao-Tsun Lin e Ching-Ping Chang. "Hypobaric hypoxia preconditioning attenuates acute lung injury during high-altitude exposure in rats via up-regulating heat-shock protein 70". Clinical Science 121, n.º 5 (20 de maio de 2011): 223–31. http://dx.doi.org/10.1042/cs20100596.
Texto completo da fonteLagishetty, Venu, Prasanna Tamarapu Parthasarathy, Oluwakemi Phillips, Jutaro Fukumoto, Young Cho, Itsuko Fukumoto, Huynh Bao et al. "Dysregulation of CLOCK gene expression in hyperoxia-induced lung injury". American Journal of Physiology-Cell Physiology 306, n.º 11 (1 de junho de 2014): C999—C1007. http://dx.doi.org/10.1152/ajpcell.00064.2013.
Texto completo da fonte