Artigos de revistas sobre o tema "LSTM Temporel"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "LSTM Temporel".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Liu, Jun, Tong Zhang, Guangjie Han e Yu Gou. "TD-LSTM: Temporal Dependence-Based LSTM Networks for Marine Temperature Prediction". Sensors 18, n.º 11 (6 de novembro de 2018): 3797. http://dx.doi.org/10.3390/s18113797.
Texto completo da fonteBaddar, Wissam J., e Yong Man Ro. "Mode Variational LSTM Robust to Unseen Modes of Variation: Application to Facial Expression Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 3215–23. http://dx.doi.org/10.1609/aaai.v33i01.33013215.
Texto completo da fonteD, Usha, Jesmalar L, Noorbasha Nagoor Meeravali, Mihirkumar B.Suthar, Rajeswari J, Pothumarthi Sridevi e Vengatesh T. "Enhanced Dengue Fever Prediction in India through Deep Learning with Spatially Attentive LSTMs". Cuestiones de Fisioterapia 54, n.º 2 (10 de janeiro de 2025): 3804–12. https://doi.org/10.48047/v3dm7y10.
Texto completo da fonteTao, Hong, Yue Deng, Yunqiu Xiang e Long Liu. "Performance of long short-term memory networks in predicting athlete injury risk". Journal of Computational Methods in Sciences and Engineering 24, n.º 4-5 (14 de agosto de 2024): 3155–71. http://dx.doi.org/10.3233/jcm-247563.
Texto completo da fonteMajeed, Mokhalad A., Helmi Zulhaidi Mohd Shafri, Zed Zulkafli e Aimrun Wayayok. "A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention". International Journal of Environmental Research and Public Health 20, n.º 5 (25 de fevereiro de 2023): 4130. http://dx.doi.org/10.3390/ijerph20054130.
Texto completo da fonteLin, Fei, Yudi Xu, Yang Yang e Hong Ma. "A Spatial-Temporal Hybrid Model for Short-Term Traffic Prediction". Mathematical Problems in Engineering 2019 (14 de janeiro de 2019): 1–12. http://dx.doi.org/10.1155/2019/4858546.
Texto completo da fonteChen, Wantong, Hailong Wu e Shiyu Ren. "CM-LSTM Based Spectrum Sensing". Sensors 22, n.º 6 (16 de março de 2022): 2286. http://dx.doi.org/10.3390/s22062286.
Texto completo da fonteTang, Qicheng, Mengning Yang e Ying Yang. "ST-LSTM: A Deep Learning Approach Combined Spatio-Temporal Features for Short-Term Forecast in Rail Transit". Journal of Advanced Transportation 2019 (6 de fevereiro de 2019): 1–8. http://dx.doi.org/10.1155/2019/8392592.
Texto completo da fonteGeng, Yue, Lingling Su, Yunhong Jia e Ce Han. "Seismic Events Prediction Using Deep Temporal Convolution Networks". Journal of Electrical and Computer Engineering 2019 (2 de abril de 2019): 1–14. http://dx.doi.org/10.1155/2019/7343784.
Texto completo da fonteVaseekaran S, Pragadeeswaran S e Mrs S Janani. "Brain Tumour Prediction Using Temporal Memory". International Research Journal on Advanced Engineering Hub (IRJAEH) 3, n.º 02 (20 de fevereiro de 2025): 235–39. https://doi.org/10.47392/irjaeh.2025.0033.
Texto completo da fonteBhandare, Yash. "Deepfake Detection Using Keyframe Extraction, Global Feature Enhancement, and Temporal Analysis". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, n.º 02 (22 de fevereiro de 2025): 1–9. https://doi.org/10.55041/ijsrem41765.
Texto completo da fonteMekouar, Youssef, Imad Saleh e Mohammed Karim. "GreenNav: Spatiotemporal Prediction of CO2 Emissions in Paris Road Traffic Using a Hybrid CNN-LSTM Model". Network 5, n.º 1 (10 de janeiro de 2025): 2. https://doi.org/10.3390/network5010002.
Texto completo da fonteHashemi, Seyed Mohammad, Ruxandra Mihaela Botez e Georges Ghazi. "Bidirectional Long Short-Term Memory Development for Aircraft Trajectory Prediction Applications to the UAS-S4 Ehécatl". Aerospace 11, n.º 8 (31 de julho de 2024): 625. http://dx.doi.org/10.3390/aerospace11080625.
Texto completo da fonteBagherian, Kamand, Edna G. Fernández-Figueroa, Stephanie R. Rogers, Alan E. Wilson e Yin Bao. "Predicting Chlorophyll-a Concentration and Harmful Algal Blooms in Lake Okeechobee Using Time-Series MODIS Satellite Imagery and Long Short-Term Memory". Journal of the ASABE 67, n.º 5 (2024): 1191–202. http://dx.doi.org/10.13031/ja.15995.
Texto completo da fonteYang, Binlin, Lu Chen, Bin Yi, Siming Li e Zhiyuan Leng. "Local Weather and Global Climate Data-Driven Long-Term Runoff Forecasting Based on Local–Global–Temporal Attention Mechanisms and Graph Attention Networks". Remote Sensing 16, n.º 19 (30 de setembro de 2024): 3659. http://dx.doi.org/10.3390/rs16193659.
Texto completo da fonteVerianto, Eko. "Penerapan LSTM Dengan Regularisasi Untuk Mencegah Overfitting Pada Model Prediksi Tingkat Inflasi di Indonesia". Simkom 9, n.º 2 (21 de julho de 2024): 195–204. http://dx.doi.org/10.51717/simkom.v9i2.460.
Texto completo da fonteJi, Shengfei, Wei Li, Yong Wang, Bo Zhang e See-Kiong Ng. "A Soft Sensor Model for Predicting the Flow of a Hydraulic Pump Based on Graph Convolutional Network–Long Short-Term Memory". Actuators 13, n.º 1 (17 de janeiro de 2024): 38. http://dx.doi.org/10.3390/act13010038.
Texto completo da fonteJiang, Rui, Hongyun Xu, Gelian Gong, Yong Kuang e Zhikang Liu. "Spatial-Temporal Attentive LSTM for Vehicle-Trajectory Prediction". ISPRS International Journal of Geo-Information 11, n.º 7 (21 de junho de 2022): 354. http://dx.doi.org/10.3390/ijgi11070354.
Texto completo da fonteWang, Changyuan, Ting Yan e Hongbo Jia. "Spatial-Temporal Feature Representation Learning for Facial Fatigue Detection". International Journal of Pattern Recognition and Artificial Intelligence 32, n.º 12 (27 de agosto de 2018): 1856018. http://dx.doi.org/10.1142/s0218001418560189.
Texto completo da fonteNg, Jia Hui, Ying Han Pang, Sarmela Raja Sekaran, Shih Yin Ooi e Lillian Yee Kiaw Wang. "Temporal Convolutional Recurrent Neural Network for Elderly Activity Recognition". Journal of Engineering Technology and Applied Physics 6, n.º 2 (15 de setembro de 2024): 84–91. http://dx.doi.org/10.33093/jetap.2024.6.2.12.
Texto completo da fonteGauch, Martin, Frederik Kratzert, Daniel Klotz, Grey Nearing, Jimmy Lin e Sepp Hochreiter. "Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network". Hydrology and Earth System Sciences 25, n.º 4 (19 de abril de 2021): 2045–62. http://dx.doi.org/10.5194/hess-25-2045-2021.
Texto completo da fonteDai, Hongbin, Guangqiu Huang, Jingjing Wang, Huibin Zeng e Fangyu Zhou. "Prediction of Air Pollutant Concentration Based on One-Dimensional Multi-Scale CNN-LSTM Considering Spatial-Temporal Characteristics: A Case Study of Xi’an, China". Atmosphere 12, n.º 12 (6 de dezembro de 2021): 1626. http://dx.doi.org/10.3390/atmos12121626.
Texto completo da fonteVarma, Danthuluru Sri Datta Manikanta. "ActiWise: Insight on Human Activity Recognition Using Deep Learning Approaches". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 05 (2 de maio de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem32830.
Texto completo da fontevan Duynhoven, Alysha, e Suzana Dragićević. "Analyzing the Effects of Temporal Resolution and Classification Confidence for Modeling Land Cover Change with Long Short-Term Memory Networks". Remote Sensing 11, n.º 23 (26 de novembro de 2019): 2784. http://dx.doi.org/10.3390/rs11232784.
Texto completo da fonteMei, Jinlong, Chengqun Wang, Shuyun Luo, Weiqiang Xu e Zhijiang Deng. "Short-Term Wind Power Prediction Based on Encoder–Decoder Network and Multi-Point Focused Linear Attention Mechanism". Sensors 24, n.º 17 (25 de agosto de 2024): 5501. http://dx.doi.org/10.3390/s24175501.
Texto completo da fonteGe, Shaojia, Weimin Su, Hong Gu, Yrjö Rauste, Jaan Praks e Oleg Antropov. "Improved LSTM Model for Boreal Forest Height Mapping Using Sentinel-1 Time Series". Remote Sensing 14, n.º 21 (4 de novembro de 2022): 5560. http://dx.doi.org/10.3390/rs14215560.
Texto completo da fonteShelke, Shivani Shelke, e Dr Sheshang Degadwala Degadwala. "Multi-Class Recognition of Soybean Leaf Diseases using a Conv-LSTM Model". International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, n.º 2 (27 de março de 2024): 249–57. http://dx.doi.org/10.32628/cseit2410217.
Texto completo da fonteZhen, Hao, Dongxiao Niu, Min Yu, Keke Wang, Yi Liang e Xiaomin Xu. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction". Sustainability 12, n.º 22 (15 de novembro de 2020): 9490. http://dx.doi.org/10.3390/su12229490.
Texto completo da fonteHu, Chunsheng, Fangjuan Cheng, Liang Ma e Bohao Li. "State of Charge Estimation for Lithium-Ion Batteries Based on TCN-LSTM Neural Networks". Journal of The Electrochemical Society 169, n.º 3 (1 de março de 2022): 030544. http://dx.doi.org/10.1149/1945-7111/ac5cf2.
Texto completo da fonteHuang, Feini, Yongkun Zhang, Ye Zhang, Wei Shangguan, Qingliang Li, Lu Li e Shijie Jiang. "Interpreting Conv-LSTM for Spatio-Temporal Soil Moisture Prediction in China". Agriculture 13, n.º 5 (27 de abril de 2023): 971. http://dx.doi.org/10.3390/agriculture13050971.
Texto completo da fonteCao, Wenzhi, Houdun Liu, Xiangzhi Zhang e Yangyan Zeng. "Residential Load Forecasting Based on Long Short-Term Memory, Considering Temporal Local Attention". Sustainability 16, n.º 24 (22 de dezembro de 2024): 11252. https://doi.org/10.3390/su162411252.
Texto completo da fonteNoor, Fahima, Sanaulla Haq, Mohammed Rakib, Tarik Ahmed, Zeeshan Jamal, Zakaria Shams Siam, Rubyat Tasnuva Hasan, Mohammed Sarfaraz Gani Adnan, Ashraf Dewan e Rashedur M. Rahman. "Water Level Forecasting Using Spatiotemporal Attention-Based Long Short-Term Memory Network". Water 14, n.º 4 (17 de fevereiro de 2022): 612. http://dx.doi.org/10.3390/w14040612.
Texto completo da fonteZhang, Yue, Zhaohui Gu, Jesse Van Griensven Thé, Simon X. Yang e Bahram Gharabaghi. "The Discharge Forecasting of Multiple Monitoring Station for Humber River by Hybrid LSTM Models". Water 14, n.º 11 (2 de junho de 2022): 1794. http://dx.doi.org/10.3390/w14111794.
Texto completo da fonteXu, Gengchen, Jingyun Xu e Yifan Zhu. "LSTM-based estimation of lithium-ion battery SOH using data characteristics and spatio-temporal attention". PLOS ONE 19, n.º 12 (26 de dezembro de 2024): e0312856. https://doi.org/10.1371/journal.pone.0312856.
Texto completo da fonteEun, Hyunjun, Jinyoung Moon, Jongyoul Park, Chanho Jung e Changick Kim. "Learning Snippet Relatedness Based on LSTM for Temporal Action Proposal Generation". Journal of Korean Institute of Communications and Information Sciences 45, n.º 6 (30 de junho de 2020): 975–78. http://dx.doi.org/10.7840/kics.2020.45.6.975.
Texto completo da fonteWanzhen Wang, Sze Song Ngu, Miaomiao Xin, Rong Liu, Qian Wang, Man Qiu e Shengqun Zhang. "Tool Wear Prediction Based on Adaptive Feature and Temporal Attention with Long Short-Term Memory Model". International Journal of Engineering and Technology Innovation 14, n.º 3 (1 de maio de 2024): 271–84. http://dx.doi.org/10.46604/ijeti.2024.13387.
Texto completo da fonteChieu Hanh Vu, Duc Hong Nguyen e Trinh Hieu Tran. "Investigating the effectiveness of LSTM and deep LSTM architectures in solar energy forecasting". International Journal of Science and Research Archive 13, n.º 1 (30 de outubro de 2024): 2519–29. http://dx.doi.org/10.30574/ijsra.2024.13.1.1950.
Texto completo da fonteZHAO, Yongpeng, Yongcang LI, Changxi MA, Ke WANG e Xuecai XU. "Optimised LSTM Neural Network for Traffic Speed Prediction with Multi-Source Data Fusion". Promet - Traffic&Transportation 36, n.º 4 (27 de agosto de 2024): 765–78. http://dx.doi.org/10.7307/ptt.v36i4.592.
Texto completo da fonteHwang, Bor-Jiunn, Hui-Hui Chen, Chaur-Heh Hsieh e Deng-Yu Huang. "Gaze Tracking Based on Concatenating Spatial-Temporal Features". Sensors 22, n.º 2 (11 de janeiro de 2022): 545. http://dx.doi.org/10.3390/s22020545.
Texto completo da fonteDu, Jiale, Zunyi Liu, Wenyuan Dong, Weifeng Zhang e Zhonghua Miao. "A Novel TCN-LSTM Hybrid Model for sEMG-Based Continuous Estimation of Wrist Joint Angles". Sensors 24, n.º 17 (30 de agosto de 2024): 5631. http://dx.doi.org/10.3390/s24175631.
Texto completo da fonteWang, Li, Qianhui Tang, Xiaoyi Wang, Jiping Xu, Zhiyao Zhao, Huiyan Zhang, Jiabin Yu et al. "Spatio-temporal data prediction of multiple air pollutants in multi-cities based on 4D digraph convolutional neural network". PLOS ONE 18, n.º 12 (22 de dezembro de 2023): e0287781. http://dx.doi.org/10.1371/journal.pone.0287781.
Texto completo da fonteGarima Pandey, Abhishek Kumar Karn e Manish Jha. "Human Activity Recognition Using CNN-LSTM-GRU Model". International Research Journal on Advanced Engineering Hub (IRJAEH) 2, n.º 04 (20 de abril de 2024): 889–94. http://dx.doi.org/10.47392/irjaeh.2024.0125.
Texto completo da fonteKolipaka, Venkata Rama Rao, e Anupama Namburu. "Integrating Temporal Fluctuations in Crop Growth with Stacked Bidirectional LSTM and 3D CNN Fusion for Enhanced Crop Yield Prediction". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 9 (27 de outubro de 2023): 376–83. http://dx.doi.org/10.17762/ijritcc.v11i9.8543.
Texto completo da fonteZhen, Peining, Hai-Bao Chen, Yuan Cheng, Zhigang Ji, Bin Liu e Hao Yu. "Fast Video Facial Expression Recognition by a Deeply Tensor-Compressed LSTM Neural Network for Mobile Devices". ACM Transactions on Internet of Things 2, n.º 4 (30 de novembro de 2021): 1–26. http://dx.doi.org/10.1145/3464941.
Texto completo da fonteVaish, Rohan Kumar. "Stock Price Prediction Using LSTM Algorithm". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 05 (28 de maio de 2024): 1–5. http://dx.doi.org/10.55041/ijsrem34831.
Texto completo da fonteWang, Weilin, Wenjing Mao, Xueli Tong e Gang Xu. "A Novel Recursive Model Based on a Convolutional Long Short-Term Memory Neural Network for Air Pollution Prediction". Remote Sensing 13, n.º 7 (27 de março de 2021): 1284. http://dx.doi.org/10.3390/rs13071284.
Texto completo da fonteWang, Bowen, Liangzhi Li, Yuta Nakashima, Ryo Kawasaki, Hajime Nagahara e Yasushi Yagi. "Noisy-LSTM: Improving Temporal Awareness for Video Semantic Segmentation". IEEE Access 9 (2021): 46810–20. http://dx.doi.org/10.1109/access.2021.3067928.
Texto completo da fonteZhang, Bingbing, Qilong Wang, Zilin Gao, Ruiren Zeng e Peihua Li. "Temporal grafter network: Rethinking LSTM for effective video recognition". Neurocomputing 505 (setembro de 2022): 276–88. http://dx.doi.org/10.1016/j.neucom.2022.07.040.
Texto completo da fonteZhang, Wanruo, Guan Yao, Bo Yang, Wenfeng Zheng e Chao Liu. "Motion Prediction of Beating Heart Using Spatio-Temporal LSTM". IEEE Signal Processing Letters 29 (2022): 787–91. http://dx.doi.org/10.1109/lsp.2022.3154317.
Texto completo da fonteZhao, Zhen, Ze Li, Fuxin Li e Yang Liu. "CNN-LSTM Based Traffic Prediction Using Spatial-temporal Features". Journal of Physics: Conference Series 2037, n.º 1 (1 de setembro de 2021): 012065. http://dx.doi.org/10.1088/1742-6596/2037/1/012065.
Texto completo da fonte