Artigos de revistas sobre o tema "Low-Rank matrix approximation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Low-Rank matrix approximation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ting Liu, Ting Liu, Mingjian Sun Mingjian Sun, Naizhang Feng Naizhang Feng, Minghua Wang Minghua Wang, Deying Chen Deying Chen e and Yi Shen and Yi Shen. "Sparse photoacoustic microscopy based on low-rank matrix approximation". Chinese Optics Letters 14, n.º 9 (2016): 091701–91705. http://dx.doi.org/10.3788/col201614.091701.
Texto completo da fonteParekh, Ankit, e Ivan W. Selesnick. "Enhanced Low-Rank Matrix Approximation". IEEE Signal Processing Letters 23, n.º 4 (abril de 2016): 493–97. http://dx.doi.org/10.1109/lsp.2016.2535227.
Texto completo da fonteFomin, Fedor V., Petr A. Golovach e Fahad Panolan. "Parameterized low-rank binary matrix approximation". Data Mining and Knowledge Discovery 34, n.º 2 (2 de janeiro de 2020): 478–532. http://dx.doi.org/10.1007/s10618-019-00669-5.
Texto completo da fonteFomin, Fedor V., Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan e Saket Saurabh. "Approximation Schemes for Low-rank Binary Matrix Approximation Problems". ACM Transactions on Algorithms 16, n.º 1 (11 de janeiro de 2020): 1–39. http://dx.doi.org/10.1145/3365653.
Texto completo da fonteZhenyue Zhang e Keke Zhao. "Low-Rank Matrix Approximation with Manifold Regularization". IEEE Transactions on Pattern Analysis and Machine Intelligence 35, n.º 7 (julho de 2013): 1717–29. http://dx.doi.org/10.1109/tpami.2012.274.
Texto completo da fonteXu, An-Bao, e Dongxiu Xie. "Low-rank approximation pursuit for matrix completion". Mechanical Systems and Signal Processing 95 (outubro de 2017): 77–89. http://dx.doi.org/10.1016/j.ymssp.2017.03.024.
Texto completo da fonteBarlow, Jesse L., e Hasan Erbay. "Modifiable low-rank approximation to a matrix". Numerical Linear Algebra with Applications 16, n.º 10 (outubro de 2009): 833–60. http://dx.doi.org/10.1002/nla.651.
Texto completo da fonteJia, Yuheng, Hui Liu, Junhui Hou e Qingfu Zhang. "Clustering Ensemble Meets Low-rank Tensor Approximation". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de maio de 2021): 7970–78. http://dx.doi.org/10.1609/aaai.v35i9.16972.
Texto completo da fonteTropp, Joel A., Alp Yurtsever, Madeleine Udell e Volkan Cevher. "Practical Sketching Algorithms for Low-Rank Matrix Approximation". SIAM Journal on Matrix Analysis and Applications 38, n.º 4 (janeiro de 2017): 1454–85. http://dx.doi.org/10.1137/17m1111590.
Texto completo da fonteLiu, Huafeng, Liping Jing, Yuhua Qian e Jian Yu. "Adaptive Local Low-rank Matrix Approximation for Recommendation". ACM Transactions on Information Systems 37, n.º 4 (10 de dezembro de 2019): 1–34. http://dx.doi.org/10.1145/3360488.
Texto completo da fonteAmini, Arash, Amin Karbasi e Farokh Marvasti. "Low-Rank Matrix Approximation Using Point-Wise Operators". IEEE Transactions on Information Theory 58, n.º 1 (janeiro de 2012): 302–10. http://dx.doi.org/10.1109/tit.2011.2167714.
Texto completo da fonteHou, Junhui, Lap-Pui Chau, Nadia Magnenat-Thalmann e Ying He. "Sparse Low-Rank Matrix Approximation for Data Compression". IEEE Transactions on Circuits and Systems for Video Technology 27, n.º 5 (maio de 2017): 1043–54. http://dx.doi.org/10.1109/tcsvt.2015.2513698.
Texto completo da fonteZhang, Zhenyue, e Lixin Wu. "Optimal low-rank approximation to a correlation matrix". Linear Algebra and its Applications 364 (maio de 2003): 161–87. http://dx.doi.org/10.1016/s0024-3795(02)00551-7.
Texto completo da fonteGillis, Nicolas, e Yaroslav Shitov. "Low-rank matrix approximation in the infinity norm". Linear Algebra and its Applications 581 (novembro de 2019): 367–82. http://dx.doi.org/10.1016/j.laa.2019.07.017.
Texto completo da fonteSong, Guang-Jing, e Michael K. Ng. "Nonnegative low rank matrix approximation for nonnegative matrices". Applied Mathematics Letters 105 (julho de 2020): 106300. http://dx.doi.org/10.1016/j.aml.2020.106300.
Texto completo da fontevan der Veen, Alle-Jan. "A Schur Method for Low-Rank Matrix Approximation". SIAM Journal on Matrix Analysis and Applications 17, n.º 1 (janeiro de 1996): 139–60. http://dx.doi.org/10.1137/s0895479893261340.
Texto completo da fonteSun, Dongxia, e Lihong Zhi. "Structured Low Rank Approximation of a Bezout Matrix". Mathematics in Computer Science 1, n.º 2 (5 de outubro de 2007): 427–37. http://dx.doi.org/10.1007/s11786-007-0014-6.
Texto completo da fonteMena, Hermann, Alexander Ostermann, Lena-Maria Pfurtscheller e Chiara Piazzola. "Numerical low-rank approximation of matrix differential equations". Journal of Computational and Applied Mathematics 340 (outubro de 2018): 602–14. http://dx.doi.org/10.1016/j.cam.2018.01.035.
Texto completo da fontePersson, David, e Daniel Kressner. "Randomized Low-Rank Approximation of Monotone Matrix Functions". SIAM Journal on Matrix Analysis and Applications 44, n.º 2 (8 de junho de 2023): 894–918. http://dx.doi.org/10.1137/22m1523923.
Texto completo da fonteSoto-Quiros, Pablo. "Error analysis of the generalized low-rank matrix approximation". Electronic Journal of Linear Algebra 37 (23 de julho de 2021): 544–48. http://dx.doi.org/10.13001/ela.2021.5961.
Texto completo da fonteZhang, Jiani, Jennifer Erway, Xiaofei Hu, Qiang Zhang e Robert Plemmons. "Randomized SVD Methods in Hyperspectral Imaging". Journal of Electrical and Computer Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/409357.
Texto completo da fonteZhu, E., M. Xu e D. Pi. "A Novel Robust Principal Component Analysis Algorithm of Nonconvex Rank Approximation". Mathematical Problems in Engineering 2020 (30 de setembro de 2020): 1–17. http://dx.doi.org/10.1155/2020/9356935.
Texto completo da fonteFernández-Val, Iván, Hugo Freeman e Martin Weidner. "Low-rank approximations of nonseparable panel models". Econometrics Journal 24, n.º 2 (18 de março de 2021): C40—C77. http://dx.doi.org/10.1093/ectj/utab007.
Texto completo da fonteChen, Zhilong, Peng Wang e Detong Zhu. "Approximation Conjugate Gradient Method for Low-Rank Matrix Recovery". Symmetry 16, n.º 5 (2 de maio de 2024): 547. http://dx.doi.org/10.3390/sym16050547.
Texto completo da fonteChang, Xiangyu, Yan Zhong, Yao Wang e Shaobo Lin. "Unified Low-Rank Matrix Estimate via Penalized Matrix Least Squares Approximation". IEEE Transactions on Neural Networks and Learning Systems 30, n.º 2 (fevereiro de 2019): 474–85. http://dx.doi.org/10.1109/tnnls.2018.2844242.
Texto completo da fonteNie, Feiping, Zhanxuan Hu e Xuelong Li. "Matrix Completion Based on Non-Convex Low-Rank Approximation". IEEE Transactions on Image Processing 28, n.º 5 (maio de 2019): 2378–88. http://dx.doi.org/10.1109/tip.2018.2886712.
Texto completo da fonteZheng, Jianwei, Mengjie Qin, Xiaolong Zhou, Jiafa Mao e Hongchuan Yu. "Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation". IEEE Transactions on Industrial Informatics 16, n.º 1 (janeiro de 2020): 488–500. http://dx.doi.org/10.1109/tii.2019.2916986.
Texto completo da fonteHorasan, Fahrettin, Hasan Erbay, Fatih Varçın e Emre Deniz. "Alternate Low-Rank Matrix Approximation in Latent Semantic Analysis". Scientific Programming 2019 (3 de fevereiro de 2019): 1–12. http://dx.doi.org/10.1155/2019/1095643.
Texto completo da fontePitaval, Renaud-Alexandre, Wei Dai e Olav Tirkkonen. "Convergence of Gradient Descent for Low-Rank Matrix Approximation". IEEE Transactions on Information Theory 61, n.º 8 (agosto de 2015): 4451–57. http://dx.doi.org/10.1109/tit.2015.2448695.
Texto completo da fontePei Chen. "Heteroscedastic Low-Rank Matrix Approximation by the Wiberg Algorithm". IEEE Transactions on Signal Processing 56, n.º 4 (abril de 2008): 1429–39. http://dx.doi.org/10.1109/tsp.2007.909353.
Texto completo da fonteDuan, Xuefeng, Jiaofen Li, Qingwen Wang e Xinjun Zhang. "Low rank approximation of the symmetric positive semidefinite matrix". Journal of Computational and Applied Mathematics 260 (abril de 2014): 236–43. http://dx.doi.org/10.1016/j.cam.2013.09.080.
Texto completo da fonteMohd Sagheer, Sameera V., e Sudhish N. George. "Ultrasound image despeckling using low rank matrix approximation approach". Biomedical Signal Processing and Control 38 (setembro de 2017): 236–49. http://dx.doi.org/10.1016/j.bspc.2017.06.011.
Texto completo da fonteLuo, Yu, e Jie Ling. "Single-image de-raining using low-rank matrix approximation". Neural Computing and Applications 32, n.º 11 (7 de junho de 2019): 7503–14. http://dx.doi.org/10.1007/s00521-019-04271-0.
Texto completo da fonteMatveev, Sergey, e Stanislav Budzinskiy. "Sketching for a low-rank nonnegative matrix approximation: Numerical study". Russian Journal of Numerical Analysis and Mathematical Modelling 38, n.º 2 (1 de março de 2023): 99–114. http://dx.doi.org/10.1515/rnam-2023-0009.
Texto completo da fonteLi, Chi-Kwong, e Gilbert Strang. "An elementary proof of Mirsky's low rank approximation theorem". Electronic Journal of Linear Algebra 36, n.º 36 (14 de outubro de 2020): 694–97. http://dx.doi.org/10.13001/ela.2020.5551.
Texto completo da fonteShi, Chengfei, Zhengdong Huang, Li Wan e Tifan Xiong. "Low-Rank Tensor Completion Based on Log-Det Rank Approximation and Matrix Factorization". Journal of Scientific Computing 80, n.º 3 (15 de julho de 2019): 1888–912. http://dx.doi.org/10.1007/s10915-019-01009-x.
Texto completo da fonteLebedeva, O. S., A. I. Osinsky e S. V. Petrov. "Low-Rank Approximation Algorithms for Matrix Completion with Random Sampling". Computational Mathematics and Mathematical Physics 61, n.º 5 (maio de 2021): 799–815. http://dx.doi.org/10.1134/s0965542521050122.
Texto completo da fonteHuang, Zhi-Long, e Hsu-Feng Hsiao. "Inter-frame Prediction with Fast Weighted Low-rank Matrix Approximation". International Journal of Electronics and Telecommunications 59, n.º 1 (1 de março de 2013): 9–16. http://dx.doi.org/10.2478/eletel-2013-0001.
Texto completo da fonteKirsteins, I. P., e D. W. Tufts. "Adaptive detection using low rank approximation to a data matrix". IEEE Transactions on Aerospace and Electronic Systems 30, n.º 1 (1994): 55–67. http://dx.doi.org/10.1109/7.250406.
Texto completo da fonteXu, Fei, Jingqi Han, Yongli Wang, Ming Chen, Yongyong Chen, Guoping He e Yunhong Hu. "Dynamic Magnetic Resonance Imaging via Nonconvex Low-Rank Matrix Approximation". IEEE Access 5 (2017): 1958–66. http://dx.doi.org/10.1109/access.2017.2657645.
Texto completo da fonteZhou, Guoxu, Andrzej Cichocki e Shengli Xie. "Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation". IEEE Transactions on Signal Processing 60, n.º 6 (junho de 2012): 2928–40. http://dx.doi.org/10.1109/tsp.2012.2190410.
Texto completo da fonteNechepurenko, Yuri M., e Miloud Sadkane. "A Low-Rank Approximation for Computing the Matrix Exponential Norm". SIAM Journal on Matrix Analysis and Applications 32, n.º 2 (abril de 2011): 349–63. http://dx.doi.org/10.1137/100789774.
Texto completo da fonteShen, Haipeng, e Jianhua Z. Huang. "Sparse principal component analysis via regularized low rank matrix approximation". Journal of Multivariate Analysis 99, n.º 6 (julho de 2008): 1015–34. http://dx.doi.org/10.1016/j.jmva.2007.06.007.
Texto completo da fonteFeng, Xingdong, e Xuming He. "Statistical inference based on robust low-rank data matrix approximation". Annals of Statistics 42, n.º 1 (fevereiro de 2014): 190–210. http://dx.doi.org/10.1214/13-aos1186.
Texto completo da fonteGillard, J. W., e A. A. Zhigljavsky. "Stochastic algorithms for solving structured low-rank matrix approximation problems". Communications in Nonlinear Science and Numerical Simulation 21, n.º 1-3 (abril de 2015): 70–88. http://dx.doi.org/10.1016/j.cnsns.2014.08.023.
Texto completo da fonteChang, Haixia. "Constrained Low Rank Approximation of the Hermitian Nonnegative-Definite Matrix". Advances in Linear Algebra & Matrix Theory 10, n.º 02 (2020): 22–33. http://dx.doi.org/10.4236/alamt.2020.102003.
Texto completo da fonteChen, Yongyong, Yanwen Guo, Yongli Wang, Dong Wang, Chong Peng e Guoping He. "Denoising of Hyperspectral Images Using Nonconvex Low Rank Matrix Approximation". IEEE Transactions on Geoscience and Remote Sensing 55, n.º 9 (setembro de 2017): 5366–80. http://dx.doi.org/10.1109/tgrs.2017.2706326.
Texto completo da fonteInoue, Kohei, e Kiichi Urahama. "Dimensionality reduction by simultaneous low-rank approximation of matrix data". Electronics and Communications in Japan (Part II: Electronics) 90, n.º 9 (2007): 42–49. http://dx.doi.org/10.1002/ecjb.20379.
Texto completo da fonteHutchings, Matthew, e Bertrand Gauthier. "Energy-Based Sequential Sampling for Low-Rank PSD-Matrix Approximation". SIAM Journal on Mathematics of Data Science 6, n.º 4 (28 de outubro de 2024): 1055–77. http://dx.doi.org/10.1137/23m162449x.
Texto completo da fonteBrick, Yaniv, e Ali E. Yilmaz. "Rapid Rank Estimation and Low-Rank Approximation of Impedance Matrix Blocks Using Proxy Grids". IEEE Transactions on Antennas and Propagation 66, n.º 10 (outubro de 2018): 5359–69. http://dx.doi.org/10.1109/tap.2018.2854361.
Texto completo da fonte