Artigos de revistas sobre o tema "Low-rank adaptation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Low-rank adaptation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yang, Weiqi, e Michael Spece. "Implicit Adaptation to Low Rank Structure in Online Learning". International Journal of Machine Learning and Computing 11, n.º 5 (setembro de 2021): 339–44. http://dx.doi.org/10.18178/ijmlc.2021.11.5.1058.
Texto completo da fonteChen, Yanran. "A concise analysis of low-rank adaptation". Applied and Computational Engineering 42, n.º 1 (23 de fevereiro de 2024): 76–82. http://dx.doi.org/10.54254/2755-2721/42/20230688.
Texto completo da fonteFilatov, N., e M. Kindulov. "Low Rank Adaptation for Stable Domain Adaptation of Vision Transformers". Optical Memory and Neural Networks 32, S2 (28 de novembro de 2023): S277—S283. http://dx.doi.org/10.3103/s1060992x2306005x.
Texto completo da fonteXu, Bingrong, Jianhua Yin, Cheng Lian, Yixin Su e Zhigang Zeng. "Low-Rank Optimal Transport for Robust Domain Adaptation". IEEE/CAA Journal of Automatica Sinica 11, n.º 7 (julho de 2024): 1667–80. http://dx.doi.org/10.1109/jas.2024.124344.
Texto completo da fonteHu, Yahao, Yifei Xie, Tianfeng Wang, Man Chen e Zhisong Pan. "Structure-Aware Low-Rank Adaptation for Parameter-Efficient Fine-Tuning". Mathematics 11, n.º 20 (17 de outubro de 2023): 4317. http://dx.doi.org/10.3390/math11204317.
Texto completo da fonteLi, Wen, Zheng Xu, Dong Xu, Dengxin Dai e Luc Van Gool. "Domain Generalization and Adaptation Using Low Rank Exemplar SVMs". IEEE Transactions on Pattern Analysis and Machine Intelligence 40, n.º 5 (1 de maio de 2018): 1114–27. http://dx.doi.org/10.1109/tpami.2017.2704624.
Texto completo da fonteJaech, Aaron, e Mari Ostendorf. "Low-Rank RNN Adaptation for Context-Aware Language Modeling". Transactions of the Association for Computational Linguistics 6 (dezembro de 2018): 497–510. http://dx.doi.org/10.1162/tacl_a_00035.
Texto completo da fonteRuff, Douglas A., Cheng Xue, Lily E. Kramer, Faisal Baqai e Marlene R. Cohen. "Low rank mechanisms underlying flexible visual representations". Proceedings of the National Academy of Sciences 117, n.º 47 (23 de novembro de 2020): 29321–29. http://dx.doi.org/10.1073/pnas.2005797117.
Texto completo da fonteJeong, Y., e H. S. Kim. "Speaker adaptation using generalised low rank approximations of training matrices". Electronics Letters 46, n.º 10 (2010): 724. http://dx.doi.org/10.1049/el.2010.0466.
Texto completo da fonteKim, Juhyeong, Gyunyeop Kim e Sangwoo Kang. "Lottery Rank-Pruning Adaptation Parameter Efficient Fine-Tuning". Mathematics 12, n.º 23 (28 de novembro de 2024): 3744. http://dx.doi.org/10.3390/math12233744.
Texto completo da fonteTao, JianWen, Dawei Song, Shiting Wen e Wenjun Hu. "Robust multi-source adaptation visual classification using supervised low-rank representation". Pattern Recognition 61 (janeiro de 2017): 47–65. http://dx.doi.org/10.1016/j.patcog.2016.07.006.
Texto completo da fonteTao, JianWen, Shiting Wen e Wenjun Hu. "Robust domain adaptation image classification via sparse and low rank representation". Journal of Visual Communication and Image Representation 33 (novembro de 2015): 134–48. http://dx.doi.org/10.1016/j.jvcir.2015.09.005.
Texto completo da fonteRen, Chuan-Xian, Xiao-Lin Xu e Hong Yan. "Generalized Conditional Domain Adaptation: A Causal Perspective With Low-Rank Translators". IEEE Transactions on Cybernetics 50, n.º 2 (fevereiro de 2020): 821–34. http://dx.doi.org/10.1109/tcyb.2018.2874219.
Texto completo da fonteWu, Hanrui, e Michael K. Ng. "Multiple Graphs and Low-Rank Embedding for Multi-Source Heterogeneous Domain Adaptation". ACM Transactions on Knowledge Discovery from Data 16, n.º 4 (31 de agosto de 2022): 1–25. http://dx.doi.org/10.1145/3492804.
Texto completo da fonteHong, Chaoqun, Zhiqiang Zeng, Rongsheng Xie, Weiwei Zhuang e Xiaodong Wang. "Domain adaptation with low-rank alignment for weakly supervised hand pose recovery". Signal Processing 142 (janeiro de 2018): 223–30. http://dx.doi.org/10.1016/j.sigpro.2017.07.032.
Texto completo da fonteYang, Liran, Min Men, Yiming Xue e Ping Zhong. "Low-rank representation-based regularized subspace learning method for unsupervised domain adaptation". Multimedia Tools and Applications 79, n.º 3-4 (5 de dezembro de 2019): 3031–47. http://dx.doi.org/10.1007/s11042-019-08474-4.
Texto completo da fonteTao, Jianwen, Haote Xu e Jianjing Fu. "Low-Rank Constrained Latent Domain Adaptation Co-Regression for Robust Depression Recognition". IEEE Access 7 (2019): 145406–25. http://dx.doi.org/10.1109/access.2019.2944211.
Texto completo da fonteXiao, Ting, Cangning Fan, Peng Liu e Hongwei Liu. "Simultaneously Improve Transferability and Discriminability for Adversarial Domain Adaptation". Entropy 24, n.º 1 (27 de dezembro de 2021): 44. http://dx.doi.org/10.3390/e24010044.
Texto completo da fonteWang, Mingliang, Daoqiang Zhang, Jiashuang Huang, Pew-Thian Yap, Dinggang Shen e Mingxia Liu. "Identifying Autism Spectrum Disorder With Multi-Site fMRI via Low-Rank Domain Adaptation". IEEE Transactions on Medical Imaging 39, n.º 3 (março de 2020): 644–55. http://dx.doi.org/10.1109/tmi.2019.2933160.
Texto completo da fonteZhu, Chenyang, Lanlan Zhang, Weibin Luo, Guangqi Jiang e Qian Wang. "Tensorial multiview low-rank high-order graph learning for context-enhanced domain adaptation". Neural Networks 181 (janeiro de 2025): 106859. http://dx.doi.org/10.1016/j.neunet.2024.106859.
Texto completo da fonteTrust, Paul, e Rosane Minghim. "A Study on Text Classification in the Age of Large Language Models". Machine Learning and Knowledge Extraction 6, n.º 4 (21 de novembro de 2024): 2688–721. http://dx.doi.org/10.3390/make6040129.
Texto completo da fonteLe, Khoi M., Trinh Pham, Tho Quan e Anh Tuan Luu. "LAMPAT: Low-Rank Adaption for Multilingual Paraphrasing Using Adversarial Training". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 16 (24 de março de 2024): 18435–43. http://dx.doi.org/10.1609/aaai.v38i16.29804.
Texto completo da fonteZdunek, Rafał, e Tomasz Sadowski. "Image Completion with Hybrid Interpolation in Tensor Representation". Applied Sciences 10, n.º 3 (22 de janeiro de 2020): 797. http://dx.doi.org/10.3390/app10030797.
Texto completo da fonteMavaddaty, Samira, Seyed Mohammad Ahadi e Sanaz Seyedin. "A novel speech enhancement method by learnable sparse and low-rank decomposition and domain adaptation". Speech Communication 76 (fevereiro de 2016): 42–60. http://dx.doi.org/10.1016/j.specom.2015.11.003.
Texto completo da fonteHong, Zhenchen, Jingwei Xiong, Han Yang e Yu K. Mo. "Lightweight Low-Rank Adaptation Vision Transformer Framework for Cervical Cancer Detection and Cervix Type Classification". Bioengineering 11, n.º 5 (8 de maio de 2024): 468. http://dx.doi.org/10.3390/bioengineering11050468.
Texto completo da fonteHu, Yaopeng. "Optimizing e-commerce recommendation systems through conditional image generation: Merging LoRA and cGANs for improved performance". Applied and Computational Engineering 32, n.º 1 (22 de janeiro de 2024): 177–84. http://dx.doi.org/10.54254/2755-2721/32/20230207.
Texto completo da fonteTatianchenko, Natalia Petrovna. "Psychological conditions for the formation of adaptation potential of an individual in the learning process". Психология и Психотехника, n.º 1 (janeiro de 2021): 62–77. http://dx.doi.org/10.7256/2454-0722.2021.1.32485.
Texto completo da fonteYan, Chaokun, Haicao Yan, Wenjuan Liang, Menghan Yin, Huimin Luo e Junwei Luo. "DP-SSLoRA: A privacy-preserving medical classification model combining differential privacy with self-supervised low-rank adaptation". Computers in Biology and Medicine 179 (setembro de 2024): 108792. http://dx.doi.org/10.1016/j.compbiomed.2024.108792.
Texto completo da fonteHong, Yang, Xiaowei Zhou, Ruzhuang Hua, Qingxuan Lv e Junyu Dong. "WaterSAM: Adapting SAM for Underwater Object Segmentation". Journal of Marine Science and Engineering 12, n.º 9 (11 de setembro de 2024): 1616. http://dx.doi.org/10.3390/jmse12091616.
Texto completo da fonteIca Wahyuni, Nonok Karlina e Citra Setyo Dwi Andhini. "Correlation Of Self Efficacy With Stress Adaptation On Chronic Kidney Failure Patients Hemodialysis In Waled General HospitalCirebon District". Jurnal Kesehatan Mahardika 6, n.º 2 (1 de setembro de 2019): 12–16. http://dx.doi.org/10.54867/jkm.v6i2.41.
Texto completo da fonteTian, Qing, e Canyu Sun. "Structure preserved ordinal unsupervised domain adaptation". Electronic Research Archive 32, n.º 11 (2024): 6338–63. http://dx.doi.org/10.3934/era.2024295.
Texto completo da fonteYashchenko, Elena Fedorovna, Ekaterina Galiulovna Shchelokova e Olga Vasilievna Lazorak. "PERSONAL FEATURES OF FOREIGN STUDENTS WITH A HIGH AND LOW LEVEL OF SELF-ACTUALIZATION DURING SOCIO-PSYCHOLOGICAL ADAPTATION". Психология. Психофизиология 13, n.º 2 (20 de julho de 2020): 62–75. http://dx.doi.org/10.14529/jpps200206.
Texto completo da fonteHou, Zejiang, Julian Salazar e George Polovets. "Meta-Learning the Difference: Preparing Large Language Models for Efficient Adaptation". Transactions of the Association for Computational Linguistics 10 (2022): 1249–65. http://dx.doi.org/10.1162/tacl_a_00517.
Texto completo da fonteQian Shi, Bo Du e Liangpei Zhang. "Domain Adaptation for Remote Sensing Image Classification: A Low-Rank Reconstruction and Instance Weighting Label Propagation Inspired Algorithm". IEEE Transactions on Geoscience and Remote Sensing 53, n.º 10 (outubro de 2015): 5677–89. http://dx.doi.org/10.1109/tgrs.2015.2427791.
Texto completo da fonteUtomo, Hanung Addi Chandra, Yuris Mulya Saputra e Agi Prasetiadi. "Implementasi Sistem Konfigurasi Router Berbasis Natural Language Processing dengan Pendekatan Low Rank Adaptation Finetuning dan 8-Bit Quantization". Journal of Internet and Software Engineering 4, n.º 2 (1 de dezembro de 2023): 1–7. http://dx.doi.org/10.22146/jise.v4i2.9093.
Texto completo da fonteKashina, Yuliya V., Irina L. Cherednik e Svetlana V. Polishchuk. "Students’ index of adaptation to the educational process depending on the personality type". Journal of Medical and Biological Research, n.º 3 (10 de outubro de 2022): 213–20. http://dx.doi.org/10.37482/2687-1491-z108.
Texto completo da fonteShumakov, Vadim Anatolevich, Darya Aleksandrovna Dubrovina e Anna Vladimirovna Platonova. "SOCIAL AND PSYCHOLOGICAL ADAPTATION OF YOUNGER SCHOOLCHILDREN TO THE LEARNING ENVIRONMENT AS A FACTOR OF THEIR EMOTIONAL WELL-BEING". Психология. Психофизиология 12, n.º 4 (15 de janeiro de 2020): 63–70. http://dx.doi.org/10.14529/jpps190407.
Texto completo da fonteMartini, Luca, Saverio Iacono, Daniele Zolezzi e Gianni Viardo Vercelli. "Advancing Persistent Character Generation: Comparative Analysis of Fine-Tuning Techniques for Diffusion Models". AI 5, n.º 4 (29 de setembro de 2024): 1779–92. http://dx.doi.org/10.3390/ai5040088.
Texto completo da fonteMahendra, Anton, e Styawati Styawati. "Implementasi Lowk-Rank Adaptation of Large Langauage Model (LoRA) Untuk Effisiensi Large Language Model". JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) 9, n.º 4 (19 de novembro de 2024): 1881–90. https://doi.org/10.29100/jipi.v9i4.5519.
Texto completo da fonteArian, Md Sahadul Hasan, Faisal Ahmed Sifat, Saif Ahmed, Nabeel Mohammed, Taseef Hasan Farook e James Dudley. "Dental Loop Chatbot: A Prototype Large Language Model Framework for Dentistry". Software 3, n.º 4 (17 de dezembro de 2024): 587–94. https://doi.org/10.3390/software3040029.
Texto completo da fonteWu, Haokun. "Large language models capsule: A research analysis of In-Context Learning (ICL) and Parameter-Efficient Fine-Tuning (PEFT) methods". Applied and Computational Engineering 43, n.º 1 (26 de fevereiro de 2024): 327–31. http://dx.doi.org/10.54254/2755-2721/43/20230858.
Texto completo da fonteAdams, Henry, Lara Kassab e Deanna Needell. "An adaptation for iterative structured matrix completion". Foundations of Data Science 3, n.º 4 (2021): 769. http://dx.doi.org/10.3934/fods.2021028.
Texto completo da fonteEker, Oktay, Murat Avcı, Selen Çiğdem, Oğuzhan Özdemir, Fatih Nar e Dmitry Kudinov. "Integrating SAM and LoRA for DSM-Based Planar Region Extraction in Building Footprints". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-4/W10-2024 (31 de maio de 2024): 57–64. http://dx.doi.org/10.5194/isprs-archives-xlviii-4-w10-2024-57-2024.
Texto completo da fonteShvyrov, V. V., D. A. Kapustin, R. N. Sentyay e T. I. Shulika. "Using Large Language Models to Classify Some Vulnerabilities in Program Code". Programmnaya Ingeneria 15, n.º 9 (9 de setembro de 2024): 465–75. http://dx.doi.org/10.17587/prin.15.465-475.
Texto completo da fonteKim, Sanghyeon, Hyunmo Yang, Younghyun Kim, Youngjoon Hong e Eunbyung Park. "Corrigendum to “Hydra: Multi-head Low-rank Adaptation for Parameter Efficient Fine-tuning” [Neural Networks Volume 178, October (2024), 1-11/106414]]". Neural Networks 181 (janeiro de 2025): 106878. http://dx.doi.org/10.1016/j.neunet.2024.106878.
Texto completo da fonteCheng, Yuxi, Yang Song, Yi Liu, Hui Zhang e Feng Liu. "High-Performance Binocular Disparity Prediction Algorithm for Edge Computing". Sensors 24, n.º 14 (14 de julho de 2024): 4563. http://dx.doi.org/10.3390/s24144563.
Texto completo da fonteMitrofanov, Igor. "SOCIO-PSYCHOLOGICAL ADAPTATION IN ADOLESCENTS WITH INTERNET-DEPENDENT BEHAVIOR". Child in a Digital World 1, n.º 1 (2023): 64. http://dx.doi.org/10.61365/forum.2023.049.
Texto completo da fonteBazi, Yakoub, Laila Bashmal, Mohamad Mahmoud Al Rahhal, Riccardo Ricci e Farid Melgani. "RS-LLaVA: A Large Vision-Language Model for Joint Captioning and Question Answering in Remote Sensing Imagery". Remote Sensing 16, n.º 9 (23 de abril de 2024): 1477. http://dx.doi.org/10.3390/rs16091477.
Texto completo da fonteHu, Haotian, Alex Jie Yang, Sanhong Deng, Dongbo Wang, Min Song e Si Shen. "A Generative Drug–Drug Interaction Triplets Extraction Framework Based on Large Language Models". Proceedings of the Association for Information Science and Technology 60, n.º 1 (outubro de 2023): 980–82. http://dx.doi.org/10.1002/pra2.918.
Texto completo da fonteMakaricheva, Elvira V., e Maria S. Burguvan. "Specificity and dynamics of psychological adaptation during the COVID-19 pandemic". Neurology Bulletin LIV, n.º 2 (19 de julho de 2022): 23–32. http://dx.doi.org/10.17816/nb106247.
Texto completo da fonte