Artigos de revistas sobre o tema "Low Mach regime"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Low Mach regime".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Faccanoni, Gloria, Bérénice Grec e Yohan Penel. "A homogeneous relaxation low mach number model". ESAIM: Mathematical Modelling and Numerical Analysis 55, n.º 4 (julho de 2021): 1569–98. http://dx.doi.org/10.1051/m2an/2021032.
Texto completo da fonteJardine, M., e E. R. Priest. "Energetics of compressible models of fast steady-state magnetic reconnection". Journal of Plasma Physics 43, n.º 1 (fevereiro de 1990): 141–50. http://dx.doi.org/10.1017/s0022377800014677.
Texto completo da fonteJi, Zifei, Huiqiang Zhang e Bing Wang. "Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, n.º 13 (20 de fevereiro de 2019): 4810–24. http://dx.doi.org/10.1177/0954410019830816.
Texto completo da fonteBaus, Franziska, Axel Klar, Nicole Marheineke e Raimund Wegener. "Low-Mach-number and slenderness limit for elastic Cosserat rods and its numerical investigation". Asymptotic Analysis 120, n.º 1-2 (6 de outubro de 2020): 103–21. http://dx.doi.org/10.3233/asy-191581.
Texto completo da fonteShajii, A., e J. P. Freidberg. "Theory of low Mach number compressible flow in a channel". Journal of Fluid Mechanics 313 (25 de abril de 1996): 131–45. http://dx.doi.org/10.1017/s0022112096002157.
Texto completo da fonteTurner, Stephen E., Lok C. Lam, Mohammad Faghri e Otto J. Gregory. "Experimental Investigation of Gas Flow in Microchannels". Journal of Heat Transfer 126, n.º 5 (1 de outubro de 2004): 753–63. http://dx.doi.org/10.1115/1.1797036.
Texto completo da fonteTomasini, M., N. Dolez e J. Léorat. "Instability of a rotating shear layer in the transonic regime". Journal of Fluid Mechanics 306 (10 de janeiro de 1996): 59–82. http://dx.doi.org/10.1017/s0022112096001231.
Texto completo da fonteBeccantini, A., E. Studer, S. Gounand, J. P. Magnaud, T. Kloczko, C. Corre e S. Kudriakov. "Numerical simulations of a transient injection flow at low Mach number regime". International Journal for Numerical Methods in Engineering 76, n.º 5 (29 de outubro de 2008): 662–96. http://dx.doi.org/10.1002/nme.2331.
Texto completo da fontePröbsting, S., Y. Yang, H. Zhang, P. Li, Y. Liu e Y. Li. "Effect of Mach number on the aeroacoustic feedback loop generating airfoil tonal noise". Physics of Fluids 34, n.º 9 (setembro de 2022): 094115. http://dx.doi.org/10.1063/5.0107181.
Texto completo da fonteDegond, Pierre, e Min Tang. "All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations". Communications in Computational Physics 10, n.º 1 (julho de 2011): 1–31. http://dx.doi.org/10.4208/cicp.210709.210610a.
Texto completo da fonteAuddy, Sayantan, Shantanu Basu e Takahiro Kudoh. "The Magnetic Field versus Density Relation in Star-forming Molecular Clouds". Astrophysical Journal Letters 928, n.º 1 (1 de março de 2022): L2. http://dx.doi.org/10.3847/2041-8213/ac5a5a.
Texto completo da fonteRadhakrishnan P, Ramanan G, Chandan Gowda H R, Meghana C K e Chaithra A N. "Aerodynamic Performance Analysis of a Variable Sweep Wing for Commercial Aircraft Applications". ACS Journal for Science and Engineering 1, n.º 1 (12 de março de 2021): 31–37. http://dx.doi.org/10.34293/acsjse.v1i1.5.
Texto completo da fonteWang, L., Y. Zhao e S. Fu. "Computational study of drag increase due to wall roughness for hypersonic flight". Aeronautical Journal 121, n.º 1237 (março de 2017): 395–415. http://dx.doi.org/10.1017/aer.2017.9.
Texto completo da fonteChalons, Christophe, Mathieu Girardin e Samuel Kokh. "An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes". Communications in Computational Physics 20, n.º 1 (22 de junho de 2016): 188–233. http://dx.doi.org/10.4208/cicp.260614.061115a.
Texto completo da fonteMeng, Jianping, Yonghao Zhang, Nicolas G. Hadjiconstantinou, Gregg A. Radtke e Xiaowen Shan. "Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows". Journal of Fluid Mechanics 718 (8 de fevereiro de 2013): 347–70. http://dx.doi.org/10.1017/jfm.2012.616.
Texto completo da fonteGalié, Thomas, Jonathan Jung, Ibtissem Lannabi e Vincent Perrier. "Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system". ESAIM: Proceedings and Surveys 76 (2024): 35–51. http://dx.doi.org/10.1051/proc/202476035.
Texto completo da fonteWang, Meng, Yi Liu e Kan Wang. "Wall-pressure fluctuations in weakly compressible turbulent channel flow". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de outubro de 2023): A282. http://dx.doi.org/10.1121/10.0023529.
Texto completo da fonteRubin, T., E. J. Kolmes, I. E. Ochs, M. E. Mlodik e N. J. Fisch. "Fueling limits in a cylindrical viscosity-limited reactor". Physics of Plasmas 29, n.º 8 (agosto de 2022): 082302. http://dx.doi.org/10.1063/5.0101271.
Texto completo da fonteBarsukow, Wasilij, Philipp V. F. Edelmann, Christian Klingenberg, Fabian Miczek e Friedrich K. Röpke. "A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics". Journal of Scientific Computing 72, n.º 2 (31 de janeiro de 2017): 623–46. http://dx.doi.org/10.1007/s10915-017-0372-4.
Texto completo da fonteZou, Ziqiang, Edouard Audit, Nicolas Grenier e Christian Tenaud. "An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime". Flow, Turbulence and Combustion 105, n.º 4 (31 de março de 2020): 1413–44. http://dx.doi.org/10.1007/s10494-020-00125-1.
Texto completo da fonteAlam, Mahbub, e Paul L. Voss. "Graphene quantum interference photodetector". Beilstein Journal of Nanotechnology 6 (12 de março de 2015): 726–35. http://dx.doi.org/10.3762/bjnano.6.74.
Texto completo da fontevan Marle, Allard Jan. "On the influence of supra-thermal particle acceleration on the morphology of low-Mach, high-β shocks". Monthly Notices of the Royal Astronomical Society 496, n.º 3 (19 de junho de 2020): 3198–208. http://dx.doi.org/10.1093/mnras/staa1771.
Texto completo da fonteLi, Xiang-Yu, e Lars Mattsson. "Coagulation of inertial particles in supersonic turbulence". Astronomy & Astrophysics 648 (abril de 2021): A52. http://dx.doi.org/10.1051/0004-6361/202040068.
Texto completo da fonteEiximeno, Benet, Carlos Tur-Mongé, Oriol Lehmkuhl e Ivette Rodríguez. "Hybrid Computation of the Aerodynamic Noise Radiated by the Wake of a Subsonic Cylinder". Fluids 8, n.º 8 (21 de agosto de 2023): 236. http://dx.doi.org/10.3390/fluids8080236.
Texto completo da fonteGat, Ilana, Georgios Matheou, Daniel Chung e Paul E. Dimotakis. "Incompressible variable-density turbulence in an external acceleration field". Journal of Fluid Mechanics 827 (24 de agosto de 2017): 506–35. http://dx.doi.org/10.1017/jfm.2017.490.
Texto completo da fonteHuet, Maxime, e Alexis Giauque. "A nonlinear model for indirect combustion noise through a compact nozzle". Journal of Fluid Mechanics 733 (23 de setembro de 2013): 268–301. http://dx.doi.org/10.1017/jfm.2013.442.
Texto completo da fonteDoshi, Parshwanath S., Rajesh Ranjan e Datta V. Gaitonde. "Global and local modal characteristics of supersonic open cavity flows". Physics of Fluids 34, n.º 3 (março de 2022): 034104. http://dx.doi.org/10.1063/5.0082808.
Texto completo da fonteCHANG, KEH-CHIN, e WEN-CHUNG WU. "A STUDY ON FLOW REGIME NEAR CRITICAL RAYLEIGH NUMBER FOR BUOYANCY-DRIVEN CAVITY FLOW". Modern Physics Letters B 19, n.º 28n29 (20 de dezembro de 2005): 1635–38. http://dx.doi.org/10.1142/s0217984905010098.
Texto completo da fonteTabrizi, Amir Bashirzadeh, e Binxin Wu. "The role of compressibility in computing noise generated at a cavitating orifice". International Journal of Aeroacoustics 18, n.º 1 (27 de novembro de 2018): 73–91. http://dx.doi.org/10.1177/1475472x18812801.
Texto completo da fonteVera, M., H. P. Hodson e R. Vazquez. "The Effects of a Trip Wire and Unsteadiness on a High-Speed Highly Loaded Low-Pressure Turbine Blade". Journal of Turbomachinery 127, n.º 4 (1 de março de 2004): 747–54. http://dx.doi.org/10.1115/1.1934446.
Texto completo da fonteProença, A. R., O. De almeida e R. H. Self. "AERODYNAMICS AND AEROACOUSTICS SURVEY FOR A LOW SPEED SUBSONIC JET OPERATING AT MACH 0.25". Revista de Engenharia Térmica 13, n.º 2 (31 de dezembro de 2014): 33. http://dx.doi.org/10.5380/reterm.v13i2.62092.
Texto completo da fonteGouasmi, Ayoub, Scott M. Murman e Karthik Duraisamy. "Entropy-stable schemes in the low-Mach-number regime: Flux-preconditioning, entropy breakdowns, and entropy transfers". Journal of Computational Physics 456 (maio de 2022): 111036. http://dx.doi.org/10.1016/j.jcp.2022.111036.
Texto completo da fonteTahani, Mojtaba, Mohammad Hojaji e Seyed Vahid Mahmoodi Jezeh. "Turbulent jet in crossflow analysis with LES approach". Aircraft Engineering and Aerospace Technology 88, n.º 6 (3 de outubro de 2016): 717–28. http://dx.doi.org/10.1108/aeat-10-2014-0167.
Texto completo da fonteKalita, B. C., e N. Devi. "Kinetic Alfvén solitons in a low-β plasma under the influence of electron drift motion". Journal of Plasma Physics 56, n.º 1 (agosto de 1996): 35–44. http://dx.doi.org/10.1017/s0022377800019073.
Texto completo da fonteDeng, S., B. W. van Oudheusden, T. Xiao e H. Bijl. "A Computational Study on the Aerodynamic Influence of a Propeller on an MAV by Unstructured Overset Grid Technique and Low Mach Number Preconditioning". Open Aerospace Engineering Journal 5, n.º 1 (1 de novembro de 2012): 11–21. http://dx.doi.org/10.2174/1874146001205010011.
Texto completo da fonteKhayat, Roger E., e Byung Chan Eu. "Generalized hydrodynamics and linear stability analysis of cylindrical Couette flow of a dilute Lennard–Jones fluid". Canadian Journal of Physics 71, n.º 11-12 (1 de novembro de 1993): 518–36. http://dx.doi.org/10.1139/p93-081.
Texto completo da fonteDesjacques, Vincent, Adi Nusser e Robin Bühler. "Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers". Astrophysical Journal 928, n.º 1 (1 de março de 2022): 64. http://dx.doi.org/10.3847/1538-4357/ac5519.
Texto completo da fonteVilquin, Alexandre, Hamid Kellay e Jean-François Boudet. "Shock waves induced by a planar obstacle in a vibrated granular gas". Journal of Fluid Mechanics 842 (7 de março de 2018): 163–87. http://dx.doi.org/10.1017/jfm.2018.128.
Texto completo da fonteDimarco, Giacomo, Raphaël Loubère, Victor Michel-Dansac e Marie-Hélène Vignal. "Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime". Journal of Computational Physics 372 (novembro de 2018): 178–201. http://dx.doi.org/10.1016/j.jcp.2018.06.022.
Texto completo da fonteRieper, Felix, e Georg Bader. "The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime". Journal of Computational Physics 228, n.º 8 (maio de 2009): 2918–33. http://dx.doi.org/10.1016/j.jcp.2009.01.002.
Texto completo da fonteWu, J. S., S. Y. Chou, U. M. Lee, Y. L. Shao e Y. Y. Lian. "Parallel DSMC Simulation of a Single Under-Expanded Free Orifice Jet From Transition to Near-Continuum Regime". Journal of Fluids Engineering 127, n.º 6 (26 de junho de 2005): 1161–70. http://dx.doi.org/10.1115/1.2062807.
Texto completo da fonteYamouni, Sami, Denis Sipp e Laurent Jacquin. "Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis". Journal of Fluid Mechanics 717 (1 de fevereiro de 2013): 134–65. http://dx.doi.org/10.1017/jfm.2012.563.
Texto completo da fonteGILL, TARSEM SINGH, HARVINDER KAUR e NARESHPAL SINGH SAINI. "Dust-acoustic solitary waves in a finite temperature dusty plasma with variable dust charge and two temperature ions". Journal of Plasma Physics 70, n.º 4 (27 de julho de 2004): 481–95. http://dx.doi.org/10.1017/s0022377803002733.
Texto completo da fonteYan, Chian, Hong Hui Teng, Xiao Cheng Mi e Hoi Dick Ng. "The Effect of Chemical Reactivity on the Formation of Gaseous Oblique Detonation Waves". Aerospace 6, n.º 6 (28 de maio de 2019): 62. http://dx.doi.org/10.3390/aerospace6060062.
Texto completo da fonteCollé, Anthony, Jérôme Limido e Jean-Paul Vila. "An Accurate SPH Scheme for Dynamic Fragmentation modelling". EPJ Web of Conferences 183 (2018): 01030. http://dx.doi.org/10.1051/epjconf/201818301030.
Texto completo da fonteFeireisl, Eduard, Mária Lukáčová-Medviďová, Šárka Nečasová, Antonín Novotný e Bangwei She. "Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime". Multiscale Modeling & Simulation 16, n.º 1 (janeiro de 2018): 150–83. http://dx.doi.org/10.1137/16m1094233.
Texto completo da fonteMAYER, CHRISTIAN S. J., DOMINIC A. VON TERZI e HERMANN F. FASEL. "Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3". Journal of Fluid Mechanics 674 (13 de janeiro de 2011): 5–42. http://dx.doi.org/10.1017/s0022112010005094.
Texto completo da fonteTheofanous, T. G., G. J. Li e T. N. Dinh. "Aerobreakup in Rarefied Supersonic Gas Flows". Journal of Fluids Engineering 126, n.º 4 (1 de julho de 2004): 516–27. http://dx.doi.org/10.1115/1.1777234.
Texto completo da fonteZou, Ziqiang, Nicolas Grenier, Samuel Kokh, Christian Tenaud e Edouard Audit. "Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime". Journal of Computational Physics 448 (janeiro de 2022): 110735. http://dx.doi.org/10.1016/j.jcp.2021.110735.
Texto completo da fonteRieper, Felix. "On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL". Journal of Computational Physics 229, n.º 2 (janeiro de 2010): 221–32. http://dx.doi.org/10.1016/j.jcp.2009.09.043.
Texto completo da fonte