Artigos de revistas sobre o tema "Low Mach regime"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Low Mach regime".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Faccanoni, Gloria, Bérénice Grec, and Yohan Penel. "A homogeneous relaxation low mach number model." ESAIM: Mathematical Modelling and Numerical Analysis 55, no. 4 (2021): 1569–98. http://dx.doi.org/10.1051/m2an/2021032.
Texto completo da fonteJardine, M., and E. R. Priest. "Energetics of compressible models of fast steady-state magnetic reconnection." Journal of Plasma Physics 43, no. 1 (1990): 141–50. http://dx.doi.org/10.1017/s0022377800014677.
Texto completo da fonteJi, Zifei, Huiqiang Zhang, and Bing Wang. "Thrust control strategy based on the minimum combustor inlet Mach number to enhance the overall performance of a scramjet engine." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 13 (2019): 4810–24. http://dx.doi.org/10.1177/0954410019830816.
Texto completo da fonteBaus, Franziska, Axel Klar, Nicole Marheineke, and Raimund Wegener. "Low-Mach-number and slenderness limit for elastic Cosserat rods and its numerical investigation." Asymptotic Analysis 120, no. 1-2 (2020): 103–21. http://dx.doi.org/10.3233/asy-191581.
Texto completo da fonteShajii, A., and J. P. Freidberg. "Theory of low Mach number compressible flow in a channel." Journal of Fluid Mechanics 313 (April 25, 1996): 131–45. http://dx.doi.org/10.1017/s0022112096002157.
Texto completo da fonteTurner, Stephen E., Lok C. Lam, Mohammad Faghri, and Otto J. Gregory. "Experimental Investigation of Gas Flow in Microchannels." Journal of Heat Transfer 126, no. 5 (2004): 753–63. http://dx.doi.org/10.1115/1.1797036.
Texto completo da fonteTomasini, M., N. Dolez, and J. Léorat. "Instability of a rotating shear layer in the transonic regime." Journal of Fluid Mechanics 306 (January 10, 1996): 59–82. http://dx.doi.org/10.1017/s0022112096001231.
Texto completo da fonteBeccantini, A., E. Studer, S. Gounand, et al. "Numerical simulations of a transient injection flow at low Mach number regime." International Journal for Numerical Methods in Engineering 76, no. 5 (2008): 662–96. http://dx.doi.org/10.1002/nme.2331.
Texto completo da fontePröbsting, S., Y. Yang, H. Zhang, P. Li, Y. Liu, and Y. Li. "Effect of Mach number on the aeroacoustic feedback loop generating airfoil tonal noise." Physics of Fluids 34, no. 9 (2022): 094115. http://dx.doi.org/10.1063/5.0107181.
Texto completo da fonteDegond, Pierre, and Min Tang. "All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations." Communications in Computational Physics 10, no. 1 (2011): 1–31. http://dx.doi.org/10.4208/cicp.210709.210610a.
Texto completo da fonteAuddy, Sayantan, Shantanu Basu, and Takahiro Kudoh. "The Magnetic Field versus Density Relation in Star-forming Molecular Clouds." Astrophysical Journal Letters 928, no. 1 (2022): L2. http://dx.doi.org/10.3847/2041-8213/ac5a5a.
Texto completo da fonteRadhakrishnan P, Ramanan G, Chandan Gowda H R, Meghana C K, and Chaithra A N. "Aerodynamic Performance Analysis of a Variable Sweep Wing for Commercial Aircraft Applications." ACS Journal for Science and Engineering 1, no. 1 (2021): 31–37. http://dx.doi.org/10.34293/acsjse.v1i1.5.
Texto completo da fonteWang, L., Y. Zhao, and S. Fu. "Computational study of drag increase due to wall roughness for hypersonic flight." Aeronautical Journal 121, no. 1237 (2017): 395–415. http://dx.doi.org/10.1017/aer.2017.9.
Texto completo da fonteChalons, Christophe, Mathieu Girardin, and Samuel Kokh. "An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes." Communications in Computational Physics 20, no. 1 (2016): 188–233. http://dx.doi.org/10.4208/cicp.260614.061115a.
Texto completo da fonteMeng, Jianping, Yonghao Zhang, Nicolas G. Hadjiconstantinou, Gregg A. Radtke, and Xiaowen Shan. "Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows." Journal of Fluid Mechanics 718 (February 8, 2013): 347–70. http://dx.doi.org/10.1017/jfm.2012.616.
Texto completo da fonteGalié, Thomas, Jonathan Jung, Ibtissem Lannabi, and Vincent Perrier. "Extension of an all-Mach Roe scheme able to deal with low Mach acoustics to full Euler system." ESAIM: Proceedings and Surveys 76 (2024): 35–51. http://dx.doi.org/10.1051/proc/202476035.
Texto completo da fonteWang, Meng, Yi Liu, and Kan Wang. "Wall-pressure fluctuations in weakly compressible turbulent channel flow." Journal of the Acoustical Society of America 154, no. 4_supplement (2023): A282. http://dx.doi.org/10.1121/10.0023529.
Texto completo da fonteRubin, T., E. J. Kolmes, I. E. Ochs, M. E. Mlodik, and N. J. Fisch. "Fueling limits in a cylindrical viscosity-limited reactor." Physics of Plasmas 29, no. 8 (2022): 082302. http://dx.doi.org/10.1063/5.0101271.
Texto completo da fonteBarsukow, Wasilij, Philipp V. F. Edelmann, Christian Klingenberg, Fabian Miczek, and Friedrich K. Röpke. "A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics." Journal of Scientific Computing 72, no. 2 (2017): 623–46. http://dx.doi.org/10.1007/s10915-017-0372-4.
Texto completo da fonteZou, Ziqiang, Edouard Audit, Nicolas Grenier, and Christian Tenaud. "An Accurate Sharp Interface Method for Two-Phase Compressible Flows at Low-Mach Regime." Flow, Turbulence and Combustion 105, no. 4 (2020): 1413–44. http://dx.doi.org/10.1007/s10494-020-00125-1.
Texto completo da fonteAlam, Mahbub, and Paul L. Voss. "Graphene quantum interference photodetector." Beilstein Journal of Nanotechnology 6 (March 12, 2015): 726–35. http://dx.doi.org/10.3762/bjnano.6.74.
Texto completo da fontevan Marle, Allard Jan. "On the influence of supra-thermal particle acceleration on the morphology of low-Mach, high-β shocks". Monthly Notices of the Royal Astronomical Society 496, № 3 (2020): 3198–208. http://dx.doi.org/10.1093/mnras/staa1771.
Texto completo da fonteLi, Xiang-Yu, and Lars Mattsson. "Coagulation of inertial particles in supersonic turbulence." Astronomy & Astrophysics 648 (April 2021): A52. http://dx.doi.org/10.1051/0004-6361/202040068.
Texto completo da fonteEiximeno, Benet, Carlos Tur-Mongé, Oriol Lehmkuhl, and Ivette Rodríguez. "Hybrid Computation of the Aerodynamic Noise Radiated by the Wake of a Subsonic Cylinder." Fluids 8, no. 8 (2023): 236. http://dx.doi.org/10.3390/fluids8080236.
Texto completo da fonteGat, Ilana, Georgios Matheou, Daniel Chung, and Paul E. Dimotakis. "Incompressible variable-density turbulence in an external acceleration field." Journal of Fluid Mechanics 827 (August 24, 2017): 506–35. http://dx.doi.org/10.1017/jfm.2017.490.
Texto completo da fonteHuet, Maxime, and Alexis Giauque. "A nonlinear model for indirect combustion noise through a compact nozzle." Journal of Fluid Mechanics 733 (September 23, 2013): 268–301. http://dx.doi.org/10.1017/jfm.2013.442.
Texto completo da fonteDoshi, Parshwanath S., Rajesh Ranjan, and Datta V. Gaitonde. "Global and local modal characteristics of supersonic open cavity flows." Physics of Fluids 34, no. 3 (2022): 034104. http://dx.doi.org/10.1063/5.0082808.
Texto completo da fonteCHANG, KEH-CHIN, and WEN-CHUNG WU. "A STUDY ON FLOW REGIME NEAR CRITICAL RAYLEIGH NUMBER FOR BUOYANCY-DRIVEN CAVITY FLOW." Modern Physics Letters B 19, no. 28n29 (2005): 1635–38. http://dx.doi.org/10.1142/s0217984905010098.
Texto completo da fonteTabrizi, Amir Bashirzadeh, and Binxin Wu. "The role of compressibility in computing noise generated at a cavitating orifice." International Journal of Aeroacoustics 18, no. 1 (2018): 73–91. http://dx.doi.org/10.1177/1475472x18812801.
Texto completo da fonteVera, M., H. P. Hodson, and R. Vazquez. "The Effects of a Trip Wire and Unsteadiness on a High-Speed Highly Loaded Low-Pressure Turbine Blade." Journal of Turbomachinery 127, no. 4 (2004): 747–54. http://dx.doi.org/10.1115/1.1934446.
Texto completo da fonteProença, A. R., O. De almeida, and R. H. Self. "AERODYNAMICS AND AEROACOUSTICS SURVEY FOR A LOW SPEED SUBSONIC JET OPERATING AT MACH 0.25." Revista de Engenharia Térmica 13, no. 2 (2014): 33. http://dx.doi.org/10.5380/reterm.v13i2.62092.
Texto completo da fonteGouasmi, Ayoub, Scott M. Murman, and Karthik Duraisamy. "Entropy-stable schemes in the low-Mach-number regime: Flux-preconditioning, entropy breakdowns, and entropy transfers." Journal of Computational Physics 456 (May 2022): 111036. http://dx.doi.org/10.1016/j.jcp.2022.111036.
Texto completo da fonteTahani, Mojtaba, Mohammad Hojaji, and Seyed Vahid Mahmoodi Jezeh. "Turbulent jet in crossflow analysis with LES approach." Aircraft Engineering and Aerospace Technology 88, no. 6 (2016): 717–28. http://dx.doi.org/10.1108/aeat-10-2014-0167.
Texto completo da fonteKalita, B. C., та N. Devi. "Kinetic Alfvén solitons in a low-β plasma under the influence of electron drift motion". Journal of Plasma Physics 56, № 1 (1996): 35–44. http://dx.doi.org/10.1017/s0022377800019073.
Texto completo da fonteDeng, S., B. W. van Oudheusden, T. Xiao, and H. Bijl. "A Computational Study on the Aerodynamic Influence of a Propeller on an MAV by Unstructured Overset Grid Technique and Low Mach Number Preconditioning." Open Aerospace Engineering Journal 5, no. 1 (2012): 11–21. http://dx.doi.org/10.2174/1874146001205010011.
Texto completo da fonteKhayat, Roger E., and Byung Chan Eu. "Generalized hydrodynamics and linear stability analysis of cylindrical Couette flow of a dilute Lennard–Jones fluid." Canadian Journal of Physics 71, no. 11-12 (1993): 518–36. http://dx.doi.org/10.1139/p93-081.
Texto completo da fonteDesjacques, Vincent, Adi Nusser, and Robin Bühler. "Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers." Astrophysical Journal 928, no. 1 (2022): 64. http://dx.doi.org/10.3847/1538-4357/ac5519.
Texto completo da fonteVilquin, Alexandre, Hamid Kellay, and Jean-François Boudet. "Shock waves induced by a planar obstacle in a vibrated granular gas." Journal of Fluid Mechanics 842 (March 7, 2018): 163–87. http://dx.doi.org/10.1017/jfm.2018.128.
Texto completo da fonteDimarco, Giacomo, Raphaël Loubère, Victor Michel-Dansac, and Marie-Hélène Vignal. "Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime." Journal of Computational Physics 372 (November 2018): 178–201. http://dx.doi.org/10.1016/j.jcp.2018.06.022.
Texto completo da fonteRieper, Felix, and Georg Bader. "The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime." Journal of Computational Physics 228, no. 8 (2009): 2918–33. http://dx.doi.org/10.1016/j.jcp.2009.01.002.
Texto completo da fonteWu, J. S., S. Y. Chou, U. M. Lee, Y. L. Shao, and Y. Y. Lian. "Parallel DSMC Simulation of a Single Under-Expanded Free Orifice Jet From Transition to Near-Continuum Regime." Journal of Fluids Engineering 127, no. 6 (2005): 1161–70. http://dx.doi.org/10.1115/1.2062807.
Texto completo da fonteYamouni, Sami, Denis Sipp, and Laurent Jacquin. "Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis." Journal of Fluid Mechanics 717 (February 1, 2013): 134–65. http://dx.doi.org/10.1017/jfm.2012.563.
Texto completo da fonteGILL, TARSEM SINGH, HARVINDER KAUR, and NARESHPAL SINGH SAINI. "Dust-acoustic solitary waves in a finite temperature dusty plasma with variable dust charge and two temperature ions." Journal of Plasma Physics 70, no. 4 (2004): 481–95. http://dx.doi.org/10.1017/s0022377803002733.
Texto completo da fonteYan, Chian, Hong Hui Teng, Xiao Cheng Mi, and Hoi Dick Ng. "The Effect of Chemical Reactivity on the Formation of Gaseous Oblique Detonation Waves." Aerospace 6, no. 6 (2019): 62. http://dx.doi.org/10.3390/aerospace6060062.
Texto completo da fonteCollé, Anthony, Jérôme Limido, and Jean-Paul Vila. "An Accurate SPH Scheme for Dynamic Fragmentation modelling." EPJ Web of Conferences 183 (2018): 01030. http://dx.doi.org/10.1051/epjconf/201818301030.
Texto completo da fonteFeireisl, Eduard, Mária Lukáčová-Medviďová, Šárka Nečasová, Antonín Novotný, and Bangwei She. "Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime." Multiscale Modeling & Simulation 16, no. 1 (2018): 150–83. http://dx.doi.org/10.1137/16m1094233.
Texto completo da fonteMAYER, CHRISTIAN S. J., DOMINIC A. VON TERZI, and HERMANN F. FASEL. "Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3." Journal of Fluid Mechanics 674 (January 13, 2011): 5–42. http://dx.doi.org/10.1017/s0022112010005094.
Texto completo da fonteTheofanous, T. G., G. J. Li, and T. N. Dinh. "Aerobreakup in Rarefied Supersonic Gas Flows." Journal of Fluids Engineering 126, no. 4 (2004): 516–27. http://dx.doi.org/10.1115/1.1777234.
Texto completo da fonteZou, Ziqiang, Nicolas Grenier, Samuel Kokh, Christian Tenaud, and Edouard Audit. "Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime." Journal of Computational Physics 448 (January 2022): 110735. http://dx.doi.org/10.1016/j.jcp.2021.110735.
Texto completo da fonteRieper, Felix. "On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL." Journal of Computational Physics 229, no. 2 (2010): 221–32. http://dx.doi.org/10.1016/j.jcp.2009.09.043.
Texto completo da fonte