Artigos de revistas sobre o tema "Low inertia power systems"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Low inertia power systems".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Mujcinagic, Alija, Mirza Kusljugic e Emir Nukic. "Wind Inertial Response Based on the Center of Inertia Frequency of a Control Area". Energies 13, n.º 23 (24 de novembro de 2020): 6177. http://dx.doi.org/10.3390/en13236177.
Texto completo da fonteWorsnopp, Tom, Michael Peshkin, Kevin Lynch e J. Edward Colgate. "Controlling the Apparent Inertia of Passive Human-Interactive Robots". Journal of Dynamic Systems, Measurement, and Control 128, n.º 1 (14 de novembro de 2005): 44–52. http://dx.doi.org/10.1115/1.2168165.
Texto completo da fonteNguyen, Ha Thi, Guangya Yang, Arne Hejde Nielsen e Peter Højgaard Jensen. "Challenges and Research Opportunities of Frequency Control in Low Inertia Systems". E3S Web of Conferences 115 (2019): 02001. http://dx.doi.org/10.1051/e3sconf/201911502001.
Texto completo da fonteKosmecki, Michał, Robert Rink, Anna Wakszyńska, Roberto Ciavarella, Marialaura Di Somma, Christina N. Papadimitriou, Venizelos Efthymiou e Giorgio Graditi. "A Methodology for Provision of Frequency Stability in Operation Planning of Low Inertia Power Systems". Energies 14, n.º 3 (31 de janeiro de 2021): 737. http://dx.doi.org/10.3390/en14030737.
Texto completo da fonteAdrees, Atia, J. V. Milanović e Pierluigi Mancarella. "Effect of inertia heterogeneity on frequency dynamics of low-inertia power systems". IET Generation, Transmission & Distribution 13, n.º 14 (23 de julho de 2019): 2951–58. http://dx.doi.org/10.1049/iet-gtd.2018.6814.
Texto completo da fonteHeylen, Evelyn, Fei Teng e Goran Strbac. "Challenges and opportunities of inertia estimation and forecasting in low-inertia power systems". Renewable and Sustainable Energy Reviews 147 (setembro de 2021): 111176. http://dx.doi.org/10.1016/j.rser.2021.111176.
Texto completo da fonteBarrueto Guzmán, Aldo, Héctor Chávez Oróstica e Karina A. Barbosa. "Stability Analysis: Two-Area Power System with Wind Power Integration". Processes 11, n.º 8 (18 de agosto de 2023): 2488. http://dx.doi.org/10.3390/pr11082488.
Texto completo da fonteChae, Dong-Ju, e Kyung Soo Kook. "Inertia Energy-Based Required Capacity Calculation of BESS for Achieving Carbon Neutrality in Korean Power System". Energies 17, n.º 8 (12 de abril de 2024): 1843. http://dx.doi.org/10.3390/en17081843.
Texto completo da fonteZhou, Jinghua, e Hao Yan. "Research on Parallel Control Strategy of Grid-forming of Power Conversion System". Journal of Physics: Conference Series 2592, n.º 1 (1 de setembro de 2023): 012075. http://dx.doi.org/10.1088/1742-6596/2592/1/012075.
Texto completo da fonteWang, Feng, Lizheng Sun, Zhang Wen e Fang Zhuo. "Overview of Inertia Enhancement Methods in DC System". Energies 15, n.º 18 (13 de setembro de 2022): 6704. http://dx.doi.org/10.3390/en15186704.
Texto completo da fonteLiu, Ruiming, Shengtie Wang, Guangchen Liu, Sufang Wen, Jianwei Zhang e Yuechao Ma. "An Improved Virtual Inertia Control Strategy for Low Voltage AC Microgrids with Hybrid Energy Storage Systems". Energies 15, n.º 2 (9 de janeiro de 2022): 442. http://dx.doi.org/10.3390/en15020442.
Texto completo da fonteGonzalez-Longatt, Francisco, Juan Manuel Roldan-Fernandez, Harold R. Chamorro, Santiago Arnaltes e Jose Luis Rodriguez-Amenedo. "Investigation of Inertia Response and Rate of Change of Frequency in Low Rotational Inertial Scenario of Synchronous Dominated System". Electronics 10, n.º 18 (17 de setembro de 2021): 2288. http://dx.doi.org/10.3390/electronics10182288.
Texto completo da fonteDeng, Xiaoyu, Ruo Mo, Pengliang Wang, Junru Chen, Dongliang Nan e Muyang Liu. "Review of RoCoF Estimation Techniques for Low-Inertia Power Systems". Energies 16, n.º 9 (26 de abril de 2023): 3708. http://dx.doi.org/10.3390/en16093708.
Texto completo da fonteDing, L., Z. Ma, P. Wall e V. Terzija. "Graph Spectra Based Controlled Islanding for Low Inertia Power Systems". IEEE Transactions on Power Delivery 32, n.º 1 (fevereiro de 2017): 302–9. http://dx.doi.org/10.1109/tpwrd.2016.2582519.
Texto completo da fonteRakhshani, Elyas, Arcadio Perilla, Jose L. Rueda Torres, Francisco M. Gonzalez-Longatt, Thiago Batista Soeiro e Mart A. M. M. Van Der Meijden. "FAPI Controller for Frequency Support in Low-Inertia Power Systems". IEEE Open Access Journal of Power and Energy 7 (2020): 276–86. http://dx.doi.org/10.1109/oajpe.2020.3010224.
Texto completo da fonteGarcia-Rosa, Paula B., e Olav B. Fosso. "Frequency support by wave farms in low inertia power systems". Energy Reports 9 (outubro de 2023): 55–61. http://dx.doi.org/10.1016/j.egyr.2023.08.049.
Texto completo da fonteMathew, Reshma, e Preetha Parakkat Kesava Panikkar. "Inertial issues in renewable energy integrated systems and virtual inertia techniques". International Journal of Power Electronics and Drive Systems (IJPEDS) 15, n.º 1 (1 de março de 2024): 466. http://dx.doi.org/10.11591/ijpeds.v15.i1.pp466-479.
Texto completo da fonteStojković, Jelena, Aleksandra Lekić e Predrag Stefanov. "Adaptive Control of HVDC Links for Frequency Stability Enhancement in Low-Inertia Systems". Energies 13, n.º 23 (24 de novembro de 2020): 6162. http://dx.doi.org/10.3390/en13236162.
Texto completo da fonteDinkelbach, Jan, Ghassen Nakti, Markus Mirz e Antonello Monti. "Simulation of Low Inertia Power Systems Based on Shifted Frequency Analysis". Energies 14, n.º 7 (27 de março de 2021): 1860. http://dx.doi.org/10.3390/en14071860.
Texto completo da fonteLu, Shengyang, Wuyang Zhang, Deyun Han, Huibin Wang, Linglin Meng, Zhenhong Yan, Yupeng Cai, Haixin Wang, Junyou Yang e Yuqiu Sui. "Low Frequency Oscillation Suppression Strategy in New Power System Based on Virtual Synchronous Generator". Journal of Physics: Conference Series 2592, n.º 1 (1 de setembro de 2023): 012058. http://dx.doi.org/10.1088/1742-6596/2592/1/012058.
Texto completo da fonteWamukoya, Brian K., Christopher M. Muriithi e Keren K. Kaberere. "Improving frequency regulation for future low inertia power grids: a review". Bulletin of Electrical Engineering and Informatics 13, n.º 1 (1 de fevereiro de 2024): 76–87. http://dx.doi.org/10.11591/eei.v13i1.5873.
Texto completo da fonteNouti, Diala, Ferdinanda Ponci e Antonello Monti. "Heterogeneous Inertia Estimation for Power Systems with High Penetration of Converter-Interfaced Generation". Energies 14, n.º 16 (17 de agosto de 2021): 5047. http://dx.doi.org/10.3390/en14165047.
Texto completo da fonteMagdy, Gaber, Abualkasim Bakeer, Morsy Nour e Eduard Petlenkov. "A New Virtual Synchronous Generator Design Based on the SMES System for Frequency Stability of Low-Inertia Power Grids". Energies 13, n.º 21 (28 de outubro de 2020): 5641. http://dx.doi.org/10.3390/en13215641.
Texto completo da fonteKerdphol, Thongchart, Masayuki Watanabe, Yasunori Mitani e Veena Phunpeng. "Applying Virtual Inertia Control Topology to SMES System for Frequency Stability Improvement of Low-Inertia Microgrids Driven by High Renewables". Energies 12, n.º 20 (15 de outubro de 2019): 3902. http://dx.doi.org/10.3390/en12203902.
Texto completo da fonteUdalov, Sergey N., Andrey A. Achitaev, Alexander G. Pristup, Boris M. Bochenkov, Yuri Pankratz e Richard D. Tarbill. "Increasing the regulating ability of a wind turbine in a local power system using magnetic continuous variable transmission". Wind Engineering 42, n.º 5 (17 de junho de 2018): 411–35. http://dx.doi.org/10.1177/0309524x18780404.
Texto completo da fonteZarifakis, Marios, William T. Coffey, Yuri P. Kalmykov, Serguey V. Titov, Declan J. Byrne e Stephen J. Carrig. "Active Damping of Power Oscillations Following Frequency Changes in Low Inertia Power Systems". IEEE Transactions on Power Systems 34, n.º 6 (novembro de 2019): 4984–92. http://dx.doi.org/10.1109/tpwrs.2019.2911845.
Texto completo da fonteOchoa, Daniel E., Felipe Galarza-Jimenez, Felipe Wilches-Bernal, David A. Schoenwald e Jorge I. Poveda. "Control Systems for Low-Inertia Power Grids: A Survey on Virtual Power Plants". IEEE Access 11 (2023): 20560–81. http://dx.doi.org/10.1109/access.2023.3249151.
Texto completo da fonteSong, Jiyu, Xinhang Zhou, Zhiquan Zhou, Yang Wang, Yifan Wang e Xutao Wang. "Review of Low Inertia in Power Systems Caused by High Proportion of Renewable Energy Grid Integration". Energies 16, n.º 16 (18 de agosto de 2023): 6042. http://dx.doi.org/10.3390/en16166042.
Texto completo da fontePatsalides, Minas, Christina N. Papadimitriou, Venizelos Efthymiou, Roberto Ciavarella, Marialaura Di Somma, Anna Wakszyńska, Michał Kosmecki, Giorgio Graditi e Maria Valenti. "Frequency Stability Evaluation in Low Inertia Systems Utilizing Smart Hierarchical Controllers". Energies 13, n.º 13 (7 de julho de 2020): 3506. http://dx.doi.org/10.3390/en13133506.
Texto completo da fonteKrishna, Ajay, Ismael Jaramillo-Cajica, Sabine Auer e Johannes Schiffer. "A power-hardware-in-the-loop testbed for intelligent operation and control of low-inertia power systems". at - Automatisierungstechnik 70, n.º 12 (1 de dezembro de 2022): 1084–95. http://dx.doi.org/10.1515/auto-2022-0025.
Texto completo da fonteSetiadi, Herlambang, Rakibuzzaman Shah, Md Rabiul Islam, Dimas Anton Asfani, Tigor Hamonangan Nasution, Muhammad Abdillah, Prisma Megantoro e Awan Uji Krismanto. "An Extreme Learning Machine Based Adaptive VISMA for Stability Enhancement of Renewable Rich Power Systems". Electronics 11, n.º 2 (13 de janeiro de 2022): 247. http://dx.doi.org/10.3390/electronics11020247.
Texto completo da fonteMaleki, Shahryar, Javad Nikoukar e Mohammad Hassan Tousifian. "Robust Frequency Control of Microgrids: A Mixed H 2 / H ∞ Virtual Inertia Emulation". International Transactions on Electrical Energy Systems 2023 (13 de abril de 2023): 1–14. http://dx.doi.org/10.1155/2023/6872765.
Texto completo da fonteRatnam, Kamala Sarojini, K. Palanisamy e Guangya Yang. "Future low-inertia power systems: Requirements, issues, and solutions - A review". Renewable and Sustainable Energy Reviews 124 (maio de 2020): 109773. http://dx.doi.org/10.1016/j.rser.2020.109773.
Texto completo da fonteAlsharif, Hassan, Mahdi Jalili e Kazi N. Hasan. "Fast frequency response services in low inertia power systems—A review". Energy Reports 9 (outubro de 2023): 228–37. http://dx.doi.org/10.1016/j.egyr.2023.05.193.
Texto completo da fonteMarkovic, Uros, Ognjen Stanojev, Petros Aristidou, Evangelos Vrettos, Duncan Callaway e Gabriela Hug. "Understanding Small-Signal Stability of Low-Inertia Systems". IEEE Transactions on Power Systems 36, n.º 5 (setembro de 2021): 3997–4017. http://dx.doi.org/10.1109/tpwrs.2021.3061434.
Texto completo da fonteCasasola-Aignesberger, Leo, e Sergio Martinez. "Fast frequency oscillations detection in low inertia power systems with excessive demand-side response for frequency regulation". Renewable Energy and Power Quality Journal 19 (setembro de 2021): 557–60. http://dx.doi.org/10.24084/repqj19.344.
Texto completo da fontePeña Asensio, Andrés, Francisco Gonzalez-Longatt, Santiago Arnaltes e Jose Luis Rodríguez-Amenedo. "Analysis of the Converter Synchronizing Method for the Contribution of Battery Energy Storage Systems to Inertia Emulation". Energies 13, n.º 6 (20 de março de 2020): 1478. http://dx.doi.org/10.3390/en13061478.
Texto completo da fonteAlandžak, Matej, Tomislav Plavsic e Dubravko Franković. "Provision of Virtual Inertia Support Using Battery Energy Storage System". Journal of Energy - Energija 70, n.º 4 (28 de novembro de 2022): 13–19. http://dx.doi.org/10.37798/2021704250.
Texto completo da fonteMakhmudov, T. F. "ВЛИЯНИЕ РЕГУЛЯТОРА СИНТЕТИЧЕСКОЙ ИНЕРЦИИ НА ИЗМЕНЕНИЯ ЧАСТОТЫ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ В ПЕРЕХОДНЫХ РЕЖИМАХ". Journal of Science and Innovative Development 6, n.º 4 (15 de agosto de 2023): 45–52. http://dx.doi.org/10.36522/2181-9637-2023-4-5.
Texto completo da fonteGao, Qun, Yan Jiang, Ke Peng e Lei Liu. "A Virtual Inertia Method for Stability Control of DC Distribution Systems with Parallel Converters". Energies 15, n.º 22 (16 de novembro de 2022): 8581. http://dx.doi.org/10.3390/en15228581.
Texto completo da fonteHuo, Yujia, Simone Barcellona, Luigi Piegari e Giambattista Gruosso. "Reactive Power Injection to Mitigate Frequency Transients Using Grid Connected PV Systems". Energies 13, n.º 8 (17 de abril de 2020): 1998. http://dx.doi.org/10.3390/en13081998.
Texto completo da fonteIm, Seunghyuk, Jeonghoo Park, Kyungsang Lee, Yongbeom Son e Byongjun Lee. "Estimation of Quantitative Inertia Requirement Based on Effective Inertia Using Historical Operation Data of South Korea Power System". Sustainability 16, n.º 23 (2 de dezembro de 2024): 10555. https://doi.org/10.3390/su162310555.
Texto completo da fontePüschel-Løvengreen, Sebastián, Mehdi Ghazavi Dozein, Steven Low e Pierluigi Mancarella. "Separation event-constrained optimal power flow to enhance resilience in low-inertia power systems". Electric Power Systems Research 189 (dezembro de 2020): 106678. http://dx.doi.org/10.1016/j.epsr.2020.106678.
Texto completo da fonteLi, Weifeng, Pengwei Du e Ning Lu. "PFR ancillary service in low-inertia power system". IET Generation, Transmission & Distribution 14, n.º 5 (13 de março de 2020): 920–30. http://dx.doi.org/10.1049/iet-gtd.2019.1536.
Texto completo da fonteKarpana, Sivakrishna, Efstratios Batzelis, Suman Maiti e Chandan Chakraborty. "PV-Supercapacitor Cascaded Topology for Primary Frequency Responses and Dynamic Inertia Emulation". Energies 14, n.º 24 (10 de dezembro de 2021): 8347. http://dx.doi.org/10.3390/en14248347.
Texto completo da fonteRudnik, V. E., A. A. Suvorov, N. Yu Ruban, M. V. Andreev e Yu D. Bay. "Operation of synthetic inertia units in electric power systems of various densities". iPolytech Journal 26, n.º 3 (8 de outubro de 2022): 465–86. http://dx.doi.org/10.21285/1814-3520-2022-3-465-486.
Texto completo da fonteKushwaha, Priyanka, Vivek Prakash, Sumanth Yamujala e Rohit Bhakar. "Fast frequency response constrained electric vehicle scheduling for low inertia power systems". Journal of Energy Storage 62 (junho de 2023): 106944. http://dx.doi.org/10.1016/j.est.2023.106944.
Texto completo da fonteJannesar, Mohammad Rasol, Sajad Sadr e Mehdi Savaghebi. "Analysis of Dynamic Voltage and Frequency Oscillations in Low-Inertia Power Systems". Journal of Iranian Association of Electrical and Electronics Engineers 20, n.º 2 (1 de junho de 2023): 65–76. http://dx.doi.org/10.52547/jiaeee.20.2.65.
Texto completo da fonteMuntwiler, Simon, Ognjen Stanojev, Andrea Zanelli, Gabriela Hug e Melanie N. Zeilinger. "A stiffness-oriented model order reduction method for low-inertia power systems". Electric Power Systems Research 235 (outubro de 2024): 110630. http://dx.doi.org/10.1016/j.epsr.2024.110630.
Texto completo da fonteZhou, Jianguo, Ye Guo, Lun Yang, Jiantao Shi, Yi Zhang, Yushuai Li, Qinglai Guo e Hongbin Sun. "A review on frequency management for low-inertia power systems: From inertia and fast frequency response perspectives". Electric Power Systems Research 228 (março de 2024): 110095. http://dx.doi.org/10.1016/j.epsr.2023.110095.
Texto completo da fonte