Literatura científica selecionada sobre o tema "Low-energy electron beams"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Low-energy electron beams".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Low-energy electron beams"

1

Jung, Jiwon, Moo-Young Lee, Jae-Gu Hwang, Moo-Hyun Lee, Min-Seok Kim, Jaewon Lee e Chin-Wook Chung. "Low-energy electron beam generation in inductively coupled plasma via a DC biased grid". Plasma Sources Science and Technology 31, n.º 2 (1 de fevereiro de 2022): 025002. http://dx.doi.org/10.1088/1361-6595/ac43c2.

Texto completo da fonte
Resumo:
Abstract Low-energy electron beam generation using a DC biased grid was investigated in an inductively coupled plasma (ICP). The electron beam was measured in argon gas at various pressures, ICP source powers, and substrate voltages (V sub). At a low ICP source power (50 W), an electron beam was generated even at small values of V sub (10 V), however at a high ICP source power (200 W), an electron beam was only generated when a higher voltage (30 V) was applied due to the short sheath thickness on the grid surface. The sheath on the grid surface is an important factor for generating electron beams because low-energy electrons are blocked. If the sheath thickness to small, a high voltage should be applied to generate an electron beam, as accelerate regions cannot exist without the sheath. At high pressure, since electrons experience numerous neutral collisions, a high substrate voltage is needed to generate an electron beam. However, if the applied substrate voltage becomes too high (40 V) at high pressure, high-energy electrons result in secondary plasma under the grid. Therefore, maintaining a low pressure and low ICP source power is important for generating electron beams.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Maitrallain, A., E. Brunetti, M. J. V. Streeter, B. Kettle, R. Spesyvtsev, G. Vieux, M. Shahzad et al. "Parametric study of high-energy ring-shaped electron beams from a laser wakefield accelerator". New Journal of Physics 24, n.º 1 (1 de janeiro de 2022): 013017. http://dx.doi.org/10.1088/1367-2630/ac3efd.

Texto completo da fonte
Resumo:
Abstract Laser wakefield accelerators commonly produce on-axis, low-divergence, high-energy electron beams. However, a high charge, annular shaped beam can be trapped outside the bubble and accelerated to high energies. Here we present a parametric study on the production of low-energy-spread, ultra-relativistic electron ring beams in a two-stage gas cell. Ring-shaped beams with energies higher than 750 MeV are observed simultaneously with on axis, continuously injected electrons. Often multiple ring shaped beams with different energies are produced and parametric studies to control the generation and properties of these structures were conducted. Particle tracking and particle-in-cell simulations are used to determine properties of these beams and investigate how they are formed and trapped outside the bubble by the wake produced by on-axis injected electrons. These unusual femtosecond duration, high-charge, high-energy, ring electron beams may find use in beam driven plasma wakefield accelerators and radiation sources.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

DEVYATKOV, V. N., N. N. KOVAL, P. M. SCHANIN, V. P. GRIGORYEV e T. V. KOVAL. "Generation and propagation of high-current low-energy electron beams". Laser and Particle Beams 21, n.º 2 (abril de 2003): 243–48. http://dx.doi.org/10.1017/s026303460321212x.

Texto completo da fonte
Resumo:
High-current electron beams with a current density of up to 100 A/cm2 generated by a plasma-cathode gas-filled diode at low accelerating voltages are studied. Two types of gas discharges are used to produce plasma in the cathode. With glow and arc discharges, beam currents of up to 150 A and 400 A, respectively, have been obtained at an accelerating voltage of 16 kV and at a pressure of 1–3·10−2 Pa in the acceleration gap. The ions resulting from ionization of gas molecules by electrons of the beam neutralize the beam charge. The charge-neutralized electron beam almost without losses is transported over a distance of 30 cm in a drift channel which is in the axial magnetic field induced by Helmholtz coils. The results of calculations for the motion of electrons of the charge-neutralized beam with and without axial external field are presented and compared with those of experiments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Lapin, Stephen C. "Modification using low energy electron beams". Filtration + Separation 52, n.º 6 (novembro de 2015): 26–31. http://dx.doi.org/10.1016/s0015-1882(15)30263-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Aleksandrov, A. V., R. Calabrese, G. Ciullo, N. S. Dikansky, V. Guidi, N. Cl Kot, V. I. Kudelainen et al. "Low energy intense electron beams with extra-low energy spread". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 340, n.º 1 (fevereiro de 1994): 114–17. http://dx.doi.org/10.1016/0168-9002(94)91287-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

OZUR, G. E., D. I. PROSKUROVSKY, V. P. ROTSHTEIN e A. B. MARKOV. "Production and application of low-energy, high-current electron beams". Laser and Particle Beams 21, n.º 2 (abril de 2003): 157–74. http://dx.doi.org/10.1017/s0263034603212040.

Texto completo da fonte
Resumo:
This article reviews experiments on the production of low-energy, high-current electron beams (LEHCEB) and their use for surface modification of materials. It is shown that electron guns with a plasma anode and an explosive emission cathode are most promising for the production of this type of beams. The problems related to the initiation of explosive emission and the production and transportation of LEHCEBs in plasma-filled diodes are considered. It has been shown that if the rise time of the accelerating voltage is comparable to or shorter than the time it takes for an ion to fly through the space charge layer, the electric field strength at the cathode and the electron current density in the layer are increased. Experimentally, it has been established that the current of the beam transported in the plasma channel is 1–2 orders of magnitude greater than the critical Pierce current and several times greater than the chaotic current of the anode plasma electrons. Methods for improving the uniformity of the energy density distribution over the beam cross section are described. The nonstationary temperature and stress fields formed in metal targets have been calculated. The features of the structure-phase transformations in the surface layers of materials irradiated with LEHCEBs have been considered. It has been demonstrated that in the surface layers quenched from the liquid state, nonequilibrium structure-phase states are formed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Daineche, R., A. Degiovanni, O. Grauby e R. Morin. "Source of low-energy coherent electron beams". Applied Physics Letters 88, n.º 2 (9 de janeiro de 2006): 023101. http://dx.doi.org/10.1063/1.2161942.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Day, Charles. "Low‐Energy Electron Beams Modify Semiconductor Surfaces". Physics Today 52, n.º 4 (abril de 1999): 20–21. http://dx.doi.org/10.1063/1.882623.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Füllekrug, M., R. Roussel-Dupré, E. M. D. Symbalisty, J. J. Colman, O. Chanrion, S. Soula, O. van der Velde et al. "Relativistic electron beams above thunderclouds". Atmospheric Chemistry and Physics Discussions 11, n.º 5 (20 de maio de 2011): 15551–72. http://dx.doi.org/10.5194/acpd-11-15551-2011.

Texto completo da fonte
Resumo:
Abstract. Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Füllekrug, M., R. Roussel-Dupré, E. M. D. Symbalisty, J. J. Colman, O. Chanrion, S. Soula, O. van der Velde et al. "Relativistic electron beams above thunderclouds". Atmospheric Chemistry and Physics 11, n.º 15 (3 de agosto de 2011): 7747–54. http://dx.doi.org/10.5194/acp-11-7747-2011.

Texto completo da fonte
Resumo:
Abstract. Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10−3 Am−2 associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Low-energy electron beams"

1

Wu, Chao. "Precision control of intense electron beams in a low-energy ring". College Park, Md. : University of Maryland, 2009. http://hdl.handle.net/1903/9153.

Texto completo da fonte
Resumo:
Thesis (Ph.D.) -- University of Maryland, College Park, 2009.
Thesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wilkie, Peter. "Positron moderation and apparatus for low energy electron and positron spectroscopy". University of Western Australia. School of Physics, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0080.

Texto completo da fonte
Resumo:
Surface-analysis and treatment apparatus have been variously designed, manufactured, developed, and commissioned or re-commissioned, for characterising the surfaces and efficiency of positron moderators based around 3 µm thick polycrystalline-tungsten foil. These include XPS and AES, based around a CLAM2 hemispherical analyser, electron-beam heating, ion bombardment, mass spectroscopy, UHV sample mounting, UHV manipulation, gas-handling lines, and entry-lock apparatus. The CLAM2 electron spectrometer is additionally adapted for operation as a bipolar charged-particle spectrometer. All control software, and much data-analysis software, is implemented in Labview. Apparatus and techniques for safely storing, handling, transferring into vacuum, and manipulating in vacuo, a nominally 1 mCi 22Na, UHV-compatible positron source, are designed, constructed, and implemented. The efficacy of cleaning and surface-analysis apparatus are demonstrated, with some limitations and instrument malfunction identified, and solutions implemented. Methods for passivating positron-trapping states in polycrystalline tungsten are proposed, based on the current understanding of positron moderation and trapping. Improved moderator geometries have been designed and an alternative, simpler, and easier to implement solid-gas moderator proposed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Wilhelm, Patrick Udo [Verfasser], e Andreas [Akademischer Betreuer] Wolf. "First Studies of Low-Energy Electron Cooling of keV Energy Ion Beams at the Electrostatic Cryogenic Storage Ring CSR / Patrick Udo Wilhelm ; Betreuer: Andreas Wolf". Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/1191758532/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ditto, Jeffrey. "Characterization of the Local Structure and Composition of Low Dimensional Heterostructures and Thin Films". Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20434.

Texto completo da fonte
Resumo:
The observation of graphene’s extraordinary electrical properties has stirred great interest in two dimensional (2D) materials. The rapid pace of discovery for low dimensional materials with exciting properties continue with graphene allotropes, multiple polymorphs of borophene, germanene, and many others. The future of 2D materials goes beyond synthesis and characterization of free standing materials and on to the construction of heterostructures or sophisticated multilayer devices. Knowledge about the resulting local structure and composition of such systems will be key to understanding and optimizing their performance characteristics. 2D materials do not have a repeating crystal structure which can be easily characterized using bulk methods and therefore a localized high resolution method is needed. Electron microscopy is well suited for characterizing 2D materials as a repeating coherent structure is not necessary to produce a measureable signal as may be the case for diffraction methods. A unique opportunity for fine local scale measurements in low dimensional systems exists with a specific class of materials known as ferecrystals, the rotationally disordered relative of misfit layer compounds. Ferecrystals provide an excellent test system to observe effects at heterostructure interfaces as the whole film is composed of interdigitated two dimensional layers. Therefore bulk methods can be used to corroborate local scale measurements. From the qualitative interpretation of high resolution scanning transmission electron microscope (STEM) images to the quantitative application of STEM energy dispersive X-ray spectroscopy (EDX), this thesis uses numerous methods electron microscopy. The culmination of this work is seen at the end of the thesis where atomically resolved STEM-EDX hyperspectral maps could be used to measure element specific atomic distances and the atomically resolved fractional occupancies of a low dimensional alloy. These local scale measurements are corroborated by additional experimental data. The input of multiple techniques leads to improved certainty in local scale measurements and the applicability of these methods to non-ferecrystal low dimensional systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ikram, M. "Radio-frequency generation of an electron plasma in a Malmberg-Penning trap and its interaction with a stationary or pulsed electron beam". Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/233616.

Texto completo da fonte
Resumo:
Experiments and numerical investigations on trapped electron plasmas and traveling electron bunches are discussed. A Thomson backscattering diagnostics set up was installed in the ELTRAP (Electron TRAP) device, a Penning-Malmberg trap operating at the Department of Physics of the University of Milano since 2001. Here, an infrared (IR) laser pulse collides with nanosecond electron bunches with an energy of 1-20 keV traveling through a longitudinal magnetic field in a dynamical regime where space-charge effects play a significant role. The backscattered radiation is optically filtered and detected by means of a photomultiplier tube. The minimum sensitivity of the backscattering diagnostics has been estimated for the present set-up configuration. Constraints on the number of photons and thus on the information one can obtain with the Thomson backscattering technique are determined by the relatively low density of the electron beam as well as by noise issues. Solutions to increase the signal level and to reduce the noise are briefly discussed. The generation of an electron plasma by stochastic heating was realized in ELTRAP under ultra-high vacuum conditions by means of the application of low power RF (1-20 MHz) drives on one of the azimuthally sectored electrodes of the trap. The relevant experimental results are reviewed. The electron heating mechanism has been studied by means of a two-dimensional (2D) particle-in-cell (PIC) code, starting with a very low electron density, and applying RF drives of various amplitudes in the range 1-15 MHz on different electrodes. The axial kinetic energy of the electrons is in general increasing for all considered cases. Of course, higher temperature increments are obtained by increasing the amplitude of the RF excitation. The simulation results indicate in particular that the heating is initially higher close to the cylindrical wall of the device. These results on the electron heating point in the same direction of the experimental findings, where the plasma formation due to the ionization of the residual gas is found to be localized close to the trap wall. The simulations indicate also major heating effects when the RF drive is applied close to one end of the trap. Similar results are obtained for an electron plasma at higher densities, simulating a situation in which the RF is applied to an already formed plasma. With the aim to extend these RF studies to the microwave range, a bench test analysis has been performed of the transmission efficiency of a microwave injection system up to a few GHz. The test was based on the use of a prototype circular waveguide with the same diameter and length of the ELTRAP electrode stack and of a coupled rectangular waveguide with dimensions suitable for a future installation in the device. Electromagnetic PIC simulations have also been performed of the electron heating effect, again both at very low and relatively high electron densities, applying a microwave drive with a frequency of approximately 3 GHz close to the center and close to one end of the trap. Both the bench test of the injection system and the numerical simulations indicate that the new microwave heating system will allow the extension of the previous RF studies to the GHz range. In particular, the electron cyclotron resonance heating of the electrons will be aimed to increasing the electron temperature, and possibly its density as a consequence of a higher ionization rate of the residual gas. The installation of the new RF system will open up the possibility to study, e.g., the interaction between the confined plasma and traveling electron bunches.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Martelli, Lorenzo. "Average Current Enhancement of Laser-Plasma Accelerators for Industrial Applications". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE012.

Texto completo da fonte
Resumo:
Cette thèse de doctorat s'inscrit dans le cadre d'une collaboration CIFRE entre Thales-MIS et le Laboratoire d'Optique Appliquée (LOA). L'objectif principal est d'améliorer le courant moyen des accélérateurs laser-plasma à faible énergie, notamment dans la gamme de quelques MeV. Cette avancée revêt un intérêt particulier pour les applications à faible énergie telles que la tomographie industrielle par rayons X, ne nécessitant pas de faisceaux d'électrons monoénergétiques.Des expériences ont été menées au moyen du système laser de 60 TW installé dans la Salle Jaune du LOA, capable de générer des impulsions de 30 fs. À travers une exploration minutieuse des densités de plasma, des énergies laser, des cibles gazeuses et des degrés de focalisation, nous avons identifié les conditions propices à la production de faisceaux d'électrons hautement divergents (i.e., >100 mrad) de quelques MeV, avec des charges variant de 5 à 30 nC. Nous avons également atteint une efficacité maximale de conversion d'énergie laser-électron d'environ 14 %, parmi les plus élevées jamais mesurées. En envisageant les futurs systèmes laser capables d'atteindre des puissances moyennes d'environ 100 W, ces configurations pourraient ouvrir la voie à la réalisation de faisceaux d'électrons accélérés par laser-plasma, avec des courants moyens dépassant 1 microampère, surpassant ainsi l'état de l'art actuel des accélérateurs laser-plasma. Pour mener à bien ces expériences novatrices, nous avons conçu une buse supersonique en verre et des dipôles magnétiques permanents permettant de dévier les électrons vers des écrans scintillants pour effectuer la spectrométrie des faisceaux produits. Parallèlement aux expériences, cette thèse a également approfondi les simulations Particle-In-Cell (PIC) pour étudier les mécanismes d'accélération. Grâce à un outil numérique spécifiquement développé pour traiter les résultats des simulations PIC, nous avons démontré que la force pondéromotrice du laser joue un rôle prépondérant dans l'accélération des électrons. Notamment, la majorité des particules ne sont pas injectées dans les ondes du plasma, mais glissent plutôt sur l'impulsion laser, acquérant ainsi une faible énergie de l'ordre de quelques MeV
This doctoral thesis is part of a CIFRE collaboration between Thales-MIS and the Laboratoire d'Optique Appliquée (LOA). The main objective is to enhance the average current of low-energy laser-plasma accelerators, particularly in the range of a few MeV. This advancement is particularly interesting for low-energy applications such as industrial X-ray tomography, which does not require monoenergetic electron beams.Experiments were conducted using the 60,TW laser system installed in the Salle Jaune at LOA, capable of generating 30 fs pulses. Through meticulous exploration of plasma densities, laser energies, gas targets, and focusing degrees, we identified conditions conducive to producing highly divergent electron beams (i.e., >100 mrad) at energies of a few MeV, with charges ranging from 5 to 30 nC. We also achieved a maximum laser-to-electron energy conversion efficiency of approximately 14 %, one of the highest ever measured. Looking ahead to future laser systems capable of achieving average powers of around 100 W, these configurations could pave the way for generating laser-plasma accelerated electron beams with average currents exceeding 1 microampere, surpassing the current state of the art in laser-plasma accelerators. To facilitate these innovative experiments, we designed a supersonic glass nozzle and permanent magnetic dipoles to deflect electrons towards scintillating screens for beam spectroscopy. Concurrently with the experiments, this thesis also delved into Particle-In-Cell (PIC) simulations to study acceleration mechanisms. Using a dedicated numerical tool for processing PIC simulation results, we demonstrated that the ponderomotive force of the laser plays a predominant role in electron acceleration. Notably, the majority of particles are not injected into plasma waves but rather slide along the laser pulse, thereby gaining low energies on the order of a few MeV
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Zhang, Tao. "A low energy electron beam system and its application to lithography". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627249.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wilstead, N. "Some low energy electron beam interactions with Yâ‚‚O₃:Eu thin films". Thesis, University of Greenwich, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415391.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Krylov, Vladyslav. "Versatile low-energy electron source at the PHIL accelerator to characterise Micromegas with integrated Timepix CMOS readout and study dE/dx for low energy electrons". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS169/document.

Texto completo da fonte
Resumo:
Dans le cadre de cette thèse, la conception, la construction et la mise en service de la plateforme de test LEETECH ont été réalisées. La performance de LEETECH, y compris le mode de fonctionnement à faible multiplicité a été démontrée. En fournissant des paquets d’électrons avec une énergie ajustable jusqu’à 3.5 MeV, une multiplicité ajustable à partir d’électrons simples et une durée des paquets jusqu’à 20ps, LEETECH prend sa place entre les faisceaux tests de hautes énergies et de coûts élevés d’un part et l’utilisation de sources radioactifs d’autre part. Dans la région, qui correspond à la particule d’ionisation minimale, la plateforme offre aux détecteurs de traces les conditions similaires aux celles de faisceaux des hautes énergies. Le mode de fonctionnement à faible multiplicité a été étudié en utilisant un détecteur diamant de grande surface. En plus une capacité d’un capteur diamant de résoudre des paquets à faible nombre des particules a été démontrée. Dans le cadre du développement de la chambre à projection temporelle (TPC) pour le projet ILC, une session de test a été dédiée à un détecteur Micromegas/InGrid de large surface. Pour la première fois les pertes d’énergie par un électron dans un mélange de gaz basée sur Helium ont été mesurées pour une énergie de quelques MeV. La résolution en dE/dx et un algorithme pour la reconstruction de traces ont été développés. Une caractérisation préliminaire du quartz barre lu par MCPPMT – un candidat pour le détecteur temps-de- vol (TOF) avec la mission de l’identification des hadrons chargés dans le futur usine tau-charm HIEPA – a été accomplie. La résolution temporelle de 50 ps obtenue pour le détecteur étudié met cette technologie prometteuse pour les études plus approfondies
Within the present thesis the design, construction and commissioning of a new test beam facility LEETECH have been performed. Performance of the new facility, including low-multiplicity operation mode has been demonstrated. A number of interesting detector tests, including large-area diamond, Micromegas/InGrid and quartz bar detectors have been performed. Development of new detector technologies for future high-energy physics collider experiments calls for selection of versatile test beam facilities, permitting to choose or adjust beam parameters such as particles type, energy and beam intensity, are irreplaceable in characterization and tests of developed instruments. Major applications comprise generic detector R&D, conceptual design and choice of detector technologies, technical design, prototypes and full-scale detector construction and tests, detector calibration and commissioning. A new test beam facility LEETECH (Low Energy Electron TECHnique) was designed, constructed and commissioned in LAL (Orsay) as an extension of existing PHIL accelerator. Providing electron bunches of adjustable energy (up to 3.5 MeV), intensity (starting from a few particles per bunch) and bunch time duration (down to 20 ps), LEETECH fills the gap between high-cost high-energy test beam facilities and use of radioactive sources. Covering a minimum-ionization particles region (electrons of energy above 1.6 MeV), LEETECH provides for tracking detectors similar conditions as high-energy facilities. Using LEETECH as an electron source, several types of detectors were investigated in order to study their performance or applications, also providing a characterization of the LEETECH performance. First studies of the LEETECH facility were performed with a plastic scintillator coupled to the Micro-channel plate photomultiplier. A low-multiplicity mode was investigated using the diamond sensor, at the same time demonstrating its ability to resolve bunches consisting of a few particles. In framework of Time Projection Chamber development for the ILC project, a session dedicated to a large-area Micromegas/InGrid module was performed. For the first time the electron energy losses in Helium-based gas mixtures were measured for the energies of few MeV. The dE/dx resolution was obtained and track reconstruction algorithm was developed. Being a candidate for the time-of- flight detector of the BESIII upgrade and future HIEPA tau-charm factories, a preliminary characterization of the quartz bar performed. The time resolution of the detector module of 50 ps was obtained, giving a promising results for the further detector studies
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Phantkankum, Nuttapong. "Development of a Low Energy Electron Accelerator System for Surface Treatments and Coatings". Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1450732635.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Low-energy electron beams"

1

Ray, P. K. Low-energy sputtering studies of boron nitride with xenon ions. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ray, P. K. Low-energy sputtering studies of boron nitride with xenon ions. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ray, P. K. Low-energy sputtering studies of boron nitride with xenon ions. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ray, P. K. Low-energy sputtering studies of boron nitride with xenon ions. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Corner, C., e Peter Hoskin. Skin cancer. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199696567.003.0018.

Texto completo da fonte
Resumo:
Chapter 13 discusses skin tumours and that they differ in their radiotherapy planning from most other sites in that the volume definition is based principally upon clinical examination and the majority will be treated by single applied beams using low-energy X-rays or electrons with clinical verification. Three major histological groups are squamous cell carcinoma, basal cell carcinoma and malignant melanoma with a fourth comprising the rarer entities of adnexal tumours and Merkel cell tumours.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Low-energy electron beams"

1

Havener, C. C. "Low Energy Electron Capture Measurements Using Merged Beams". In The Physics of Multiply and Highly Charged Ions, 193–217. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0544-8_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Jost, K., e J. Kessler. "Production of Highly Polarized Electron Beams by Low-Energy Scattering". In Springer Series on Atomic, Optical, and Plasma Physics, 431–33. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0187-5_21.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Jafari, H., H. Chopan e R. Taleei. "Monte Carlo Study of Depth Dose Calculation for Low Energy Clinical Electron Beams". In IFMBE Proceedings, 883–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03474-9_248.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Koga, J. K., S. V. Bulanov, T. Zh Esirkepov e M. Kando. "Achieving Laser Wakefield Accelerated Electron Beams of Low Enough Energy Spread for an X-FEL". In Springer Proceedings in Physics, 117–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73025-7_18.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Goldstein, Joseph I., Dale E. Newbury, Joseph R. Michael, Nicholas W. M. Ritchie, John Henry J. Scott e David C. Joy. "Low Beam Energy SEM". In Scanning Electron Microscopy and X-Ray Microanalysis, 165–72. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6676-9_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Seeman, J., D. Schulte, J. P. Delahaye, M. Ross, S. Stapnes, A. Grudiev, A. Yamamoto et al. "Design and Principles of Linear Accelerators and Colliders". In Particle Physics Reference Library, 295–336. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_7.

Texto completo da fonte
Resumo:
AbstractLinear accelerators (linacs) use alternating radiofrequency (RF) electromagnetic fields to accelerate charged particles in a straight line. Linacs were invented about 95 years ago and have seen many significant technical innovations since. A wide range of particle beams have been accelerated with linacs including beams of electrons, positrons, protons, antiprotons, and heavy ions. Linac parameter possibilities include pulsed versus continuous wave, low and high beam powers, low and high repetition rates, low transverse emittance beams, short bunches with small energy spreads, and accelerated multiple bunches in a single pulse. The number of linacs around the world has grown tremendously with thousands of linacs in present use, many for medical therapy, in industry, and for research and development in a broad spectrum of scientific fields. Researchers have developed accelerators for scientific tools in their own right, being awarded several Nobel prizes. Moreover, linacs and particle accelerators in general have enabled many discovery level science experiments in related fields, resulting in many Nobel prizes as well.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Goldstein, Joseph I., Dale E. Newbury, Joseph R. Michael, Nicholas W. M. Ritchie, John Henry J. Scott e David C. Joy. "Low Beam Energy X-Ray Microanalysis". In Scanning Electron Microscopy and X-Ray Microanalysis, 359–80. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6676-9_22.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Yates, John T. "Low-Energy Electron Gun for Broad-Beam Irradiation". In Experimental Innovations in Surface Science, 280–81. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2304-7_85.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Yates, John T. "Low-Energy Electron Gun for Broad-Beam Irradiation—Cylindrical Symmetry". In Experimental Innovations in Surface Science, 282–87. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2304-7_86.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Crompton, R. W. "Beam, Swarm and Theoretical Studies of Low-Energy Electron Scattering: Some Exemplars". In Nonequilibrium Effects in Ion and Electron Transport, 11–36. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0661-0_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Low-energy electron beams"

1

Ciarrocchi, E., R. Anzalone, A. Cavalieri, D. Del Sarto, F. Di Martino, M. Morrocchi, E. Ravera e M. G. Bisogni. "Plastic scintillator imaging of low-energy electron flash- and mini-beams". In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10657797.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Renaud, Dylan, Daniel Assumpcao, Chang Jin, David Barton, Jeffrey Holzgrafe, Keith Powell, Matthew Yeh, Amirhassan Shams-Ansari e Marko Loncar. "Mitigating Electron Beam Induced Defects for Low-Loss and Stable Active Photonic Circuits". In CLEO: Science and Innovations, SF3G.7. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf3g.7.

Texto completo da fonte
Resumo:
We report on the controlled generation and annihilation of defects in photonic platforms using low-energy electron beams. We show how these defects impact propagation losses and EO-stability in LNOI, and how they can be rectified.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kunz, R. R., T. E. Allen e T. M. Mayer. "Thin Film Growth and Deposition by Low Energy Electron Stimulated Surface Chemistry". In Microphysics of Surfaces, Beams, and Adsorbates. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/msba.1987.tua2.

Texto completo da fonte
Resumo:
Direct materials processing by focused particle beams has received considerable attention in recent years. The electron beam, traditionally used for resist exposure in electron beam lithography applications, is among the candidates for direct materials modification. High energy electrons (>1keV) are not very chemically active due to small cross sections for inelastic scattering processes such as bond dissociation and attachment. Low energy electrons are expected to be much more efficient at stimulating chemical processes. In particular, secondary electrons produced by particle or photon bombardment of surfaces with kinetic energies of approx. 2-10 eV have large cross sections for attachment and dissociative electron attachment to many electronegative molecules. We have begun a general investigation of chemical reactivity and mechanisms of electron-adsorbate interactions leading to film growth and deposition. Prospects for applications to focussed beam, direct write materials processing are being explored.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kuroda, N. "Antiproton and Electron Plasma Behavior and its Control for Production of Ultraslow Antiproton Beams". In LOW ENERGY ANTIPROTON PHYSICS: Eighth International Conference on Low Energy Antiproton Physics (LEAP '05). AIP, 2005. http://dx.doi.org/10.1063/1.2130188.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bettega, G. "Coherent Structures in low Energy Electron Beams in ELTRAP". In NON-NEUTRAL PLASMA PHYSICS V: Workshop on Non-Neutral Plasmas. AIP, 2003. http://dx.doi.org/10.1063/1.1635178.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Atems, D. E., e J. M. Wadehra. "Isotope effect in vibrational excitation of H2 by low energy electron impact". In Production and neutralization of negative ions and beams. AIP, 1990. http://dx.doi.org/10.1063/1.39604.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bogdanovitch, B., V. Senioukov, A. Koroliov e K. Simonov. "Application of low energy electron beams for technology and medicine". In Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366). IEEE, 1999. http://dx.doi.org/10.1109/pac.1999.792779.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ozur, G. E. "Low-energy, high-current electron beams for material surface treatment". In 2012 XXVth International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV 2012). IEEE, 2012. http://dx.doi.org/10.1109/deiv.2012.6412586.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ozur, Grigory E. "Low-energy, high-current electron beams for material surface treatment". In 2014 Tenth International Vacuum Electron Sources Conference (IVESC). IEEE, 2014. http://dx.doi.org/10.1109/ivesc.2014.6892051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Orlov, D. A., H. Fadil, M. Grieser e A. Wolf. "Cold Photocathode Electron Sources and Perspectives for Low-Energy Magnetically Guided Electron Beams". In NON-NEUTRAL PLASMA PHYSICS VI: Workshop on Non-Neutral Plasmas 2006. AIP, 2006. http://dx.doi.org/10.1063/1.2387933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Low-energy electron beams"

1

Treado, Colleen J. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams. Office of Scientific and Technical Information (OSTI), setembro de 2012. http://dx.doi.org/10.2172/1050213.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Goodman, Daniel. Advanced Low-Cost Composite Curing With High Energy Electron Beams. Phase 2. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1998. http://dx.doi.org/10.21236/ada358391.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hershcovitch, A., B. Johnson, F. Patton, N. Rostoker, A. VanDrie e F. Wessel. Electron Beams and Z-Pinches as Plasma Strippers and Lens for Low Energy Heavy Ions. Office of Scientific and Technical Information (OSTI), julho de 1999. http://dx.doi.org/10.2172/1151381.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Hershcovitch A. Issues Concerning High Current Low Energy Electron Beams Required for Ion Cooling between EBIS LINAC and Booster. Office of Scientific and Technical Information (OSTI), março de 2009. http://dx.doi.org/10.2172/1061946.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Prost, Lionel, Alexander Shemyakin, Alexei Fedotov e Jorg Kewisch. Low-energy run of Fermilab Electron Cooler's beam generation system. Office of Scientific and Technical Information (OSTI), agosto de 2010. http://dx.doi.org/10.2172/989908.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Prost, L., A. Fedotov, A. Shemyakin e J. Kewisch. Low-energy run of Fermilab Electron cooler's beam generation system. Office of Scientific and Technical Information (OSTI), agosto de 2010. http://dx.doi.org/10.2172/990263.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia