Siga este link para ver outros tipos de publicações sobre o tema: Logic programming.

Artigos de revistas sobre o tema "Logic programming"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Logic programming".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Cohen, Jacques. "Logic programming and constraint logic programming". ACM Computing Surveys 28, n.º 1 (março de 1996): 257–59. http://dx.doi.org/10.1145/234313.234416.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

KOWALSKI, ROBERT, e FARIBA SADRI. "Programming in logic without logic programming". Theory and Practice of Logic Programming 16, n.º 3 (16 de março de 2016): 269–95. http://dx.doi.org/10.1017/s1471068416000041.

Texto completo da fonte
Resumo:
AbstractIn previous work, we proposed a logic-based framework in which computation is the execution of actions in an attempt to make reactive rules of the form if antecedent then consequent true in a canonical model of a logic program determined by an initial state, sequence of events, and the resulting sequence of subsequent states. In this model-theoretic semantics, reactive rules are the driving force, and logic programs play only a supporting role. In the canonical model, states, actions, and other events are represented with timestamps. But in the operational semantics (OS), for the sake of efficiency, timestamps are omitted and only the current state is maintained. State transitions are performed reactively by executing actions to make the consequents of rules true whenever the antecedents become true. This OS is sound, but incomplete. It cannot make reactive rules true by preventing their antecedents from becoming true, or by proactively making their consequents true before their antecedents become true. In this paper, we characterize the notion of reactive model, and prove that the OS can generate all and only such models. In order to focus on the main issues, we omit the logic programming component of the framework.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Oliveira, Kleidson Êglicio Carvalho da Silva. "Paraconsistent Logic Programming in Three and Four-Valued Logics". Bulletin of Symbolic Logic 28, n.º 2 (junho de 2022): 260. http://dx.doi.org/10.1017/bsl.2021.34.

Texto completo da fonte
Resumo:
AbstractFrom the interaction among areas such as Computer Science, Formal Logic, and Automated Deduction arises an important new subject called Logic Programming. This has been used continuously in the theoretical study and practical applications in various fields of Artificial Intelligence. After the emergence of a wide variety of non-classical logics and the understanding of the limitations presented by first-order classical logic, it became necessary to consider logic programming based on other types of reasoning in addition to classical reasoning. A type of reasoning that has been well studied is the paraconsistent, that is, the reasoning that tolerates contradictions. However, although there are many paraconsistent logics with different types of semantics, their application to logic programming is more delicate than it first appears, requiring an in-depth study of what can or cannot be transferred directly from classical first-order logic to other types of logic.Based on studies of Tarcisio Rodrigues on the foundations of Paraconsistent Logic Programming (2010) for some Logics of Formal Inconsistency (LFIs), this thesis intends to resume the research of Rodrigues and place it in the specific context of LFIs with three- and four-valued semantics. This kind of logics are interesting from the computational point of view, as presented by Luiz Silvestrini in his Ph.D. thesis entitled “A new approach to the concept of quase-truth” (2011), and by Marcelo Coniglio and Martín Figallo in the article “Hilbert-style presentations of two logics associated to tetravalent modal algebras” [Studia Logica (2012)]. Based on original techniques, this study aims to define well-founded systems of paraconsistent logic programming based on well-known logics, in contrast to the ad hoc approaches to this question found in the literature.Abstract prepared by Kleidson Êglicio Carvalho da Silva Oliveira.E-mail: kecso10@yahoo.com.brURL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/322632
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

K, Kwon. "Exception Handling in Logic Programming". Advances in Robotic Technology 1, n.º 1 (2 de outubro de 2023): 1–3. http://dx.doi.org/10.23880/art-16000104.

Texto completo da fonte
Resumo:
One problem on logic programming is to express exception handling. We argue that this problem can be solved by adopting linear logic and prioritized-choice disjunctive goal formulas (PCD) of the form G G 0 *1 ⊕ where G0, G1 are goals. These goals have the following intended semantics: sequentially choose the first true goal GI and execute GI where i (= 0 or 1), discarding the rest if any.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Robinson, J. A. "Logic and logic programming". Communications of the ACM 35, n.º 3 (março de 1992): 40–65. http://dx.doi.org/10.1145/131295.131296.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Voronkov, A. A. "Logic programming and ?-programming". Cybernetics 25, n.º 1 (1989): 83–91. http://dx.doi.org/10.1007/bf01074888.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Genesereth, Michael R., e Matthew L. Ginsberg. "Logic programming". Communications of the ACM 28, n.º 9 (setembro de 1985): 933–41. http://dx.doi.org/10.1145/4284.4287.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Brady, Michael. "Logic Programming". Irish Journal of Psychology 10, n.º 2 (janeiro de 1989): 304–16. http://dx.doi.org/10.1080/03033910.1989.10557749.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ashbacher, Charles. "From logic to logic programming". Journal of Automated Reasoning 16, n.º 3 (junho de 1996): 427. http://dx.doi.org/10.1007/bf00252183.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

ANTONIOU, GRIGORIS. "LOGIC PROGRAMMING AND DEFAULT LOGIC". International Journal on Artificial Intelligence Tools 03, n.º 03 (setembro de 1994): 367–73. http://dx.doi.org/10.1142/s0218213094000194.

Texto completo da fonte
Resumo:
We present several ideas of increasing complexity how to translate default theories to normal logic programs that make direct use of the deductive capacity of logic programming. We show the limitations of simple, ad hoc approaches, and arrive at a more general construction; its main property is that the answer substitutions computed by the logic program via its standard operational semantics correspond exactly to the extensions of the default theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Shepherdson, J. C. "From Logic to Logic Programming". Computer Journal 38, n.º 1 (1 de janeiro de 1995): 78. http://dx.doi.org/10.1093/comjnl/38.1.78.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Van Benthem, Johan. "Logic as Programming". Fundamenta Informaticae 17, n.º 4 (1 de novembro de 1992): 285–317. http://dx.doi.org/10.3233/fi-1992-17402.

Texto completo da fonte
Resumo:
Starting from a general dynamic analysis of reasoning and programming, we develop two main dynamic perspectives upon logic programming. First, the standard fixed point semantics for Horn clause programs naturally supports imperative programming styles. Next, we provide axiomatizations for Prolog-type inference engines using calculi of sequents employing modified versions of standard structural rules such as monotonicity or permutation. Finally, we discuss the implications of all this for a broader enterprise of ‘abstract proof theory’.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Subrahmanian, V. S. "Nonmonotonic logic programming". IEEE Transactions on Knowledge and Data Engineering 11, n.º 1 (1999): 143–52. http://dx.doi.org/10.1109/69.755623.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Clark, K. L. "Parallel Logic Programming". Computer Journal 33, n.º 6 (1 de junho de 1990): 482–93. http://dx.doi.org/10.1093/comjnl/33.6.482.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Antoy, Sergio, e Michael Hanus. "Functional logic programming". Communications of the ACM 53, n.º 4 (abril de 2010): 74–85. http://dx.doi.org/10.1145/1721654.1721675.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Cheney, James, e Christian Urban. "Nominal logic programming". ACM Transactions on Programming Languages and Systems 30, n.º 5 (agosto de 2008): 1–47. http://dx.doi.org/10.1145/1387673.1387675.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Brogi, Antonio, e Roberto Gorrieri. "Distributed Logic Programming". Journal of Logic Programming 15, n.º 4 (abril de 1993): 295–335. http://dx.doi.org/10.1016/s0743-1066(14)80002-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Abadi, Martín, e Zohar Manna. "Temporal logic programming". Journal of Symbolic Computation 8, n.º 3 (setembro de 1989): 277–95. http://dx.doi.org/10.1016/s0747-7171(89)80070-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Van Hentenryck, Pascal. "Constraint logic programming". Knowledge Engineering Review 6, n.º 3 (setembro de 1991): 151–94. http://dx.doi.org/10.1017/s0269888900005798.

Texto completo da fonte
Resumo:
AbstractConstraint logic programming (CLP) is a generalization of logic programming (LP) where unification, the basic operation of LP languages, is replaced by constraint handling in a constraint system. The resulting languages combine the advantages of LP (declarative semantics, nondeterminism, relational form) with the efficiency of constraint-solving algorithms. For some classes of combinatorial search problems, they shorten the development time significantly while preserving most of the efficiency of imperative languages. This paper surveys this new class of programming languages from their underlying theory, to their constraint systems, and to their applications to combinatorial problems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Vojtáš, Peter. "Fuzzy logic programming". Fuzzy Sets and Systems 124, n.º 3 (dezembro de 2001): 361–70. http://dx.doi.org/10.1016/s0165-0114(01)00106-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Ebrahim, Rafee. "Fuzzy logic programming". Fuzzy Sets and Systems 117, n.º 2 (janeiro de 2001): 215–30. http://dx.doi.org/10.1016/s0165-0114(98)00300-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Muggleton, Stephen. "Inductive logic programming". New Generation Computing 8, n.º 4 (fevereiro de 1991): 295–318. http://dx.doi.org/10.1007/bf03037089.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Bonatti, Piero A. "Autoepistemic logic programming". Journal of Automated Reasoning 13, n.º 1 (1994): 35–67. http://dx.doi.org/10.1007/bf00881911.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

KAKAS, A. C., R. A. KOWALSKI e F. TONI. "Abductive Logic Programming". Journal of Logic and Computation 2, n.º 6 (1992): 719–70. http://dx.doi.org/10.1093/logcom/2.6.719.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Laenens, Els, Domenico Sacca e Dirk Vermeir. "Extending logic programming". ACM SIGMOD Record 19, n.º 2 (maio de 1990): 184–93. http://dx.doi.org/10.1145/93605.98728.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Pau, L. F., e H. Olason. "Visual logic programming". Journal of Visual Languages & Computing 2, n.º 1 (março de 1991): 3–15. http://dx.doi.org/10.1016/s1045-926x(05)80049-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Nguyen, Linh Anh. "Multimodal logic programming". Theoretical Computer Science 360, n.º 1-3 (agosto de 2006): 247–88. http://dx.doi.org/10.1016/j.tcs.2006.03.026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Muggleton, Stephen. "Inductive logic programming". ACM SIGART Bulletin 5, n.º 1 (janeiro de 1994): 5–11. http://dx.doi.org/10.1145/181668.181671.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Brogi, Antonio, Paolo Mancarella, Dino Pedreschi e Franco Turini. "Modular logic programming". ACM Transactions on Programming Languages and Systems 16, n.º 4 (julho de 1994): 1361–98. http://dx.doi.org/10.1145/183432.183528.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Bruynooghe, Maurice, e Victor Marek. "Logic programming revisited". ACM Transactions on Computational Logic 2, n.º 4 (outubro de 2001): 623–54. http://dx.doi.org/10.1145/383779.383789.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Vardi, MosheY. "Database logic programming". Journal of Logic Programming 10, n.º 3-4 (abril de 1991): 179–80. http://dx.doi.org/10.1016/0743-1066(91)90035-n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Ng, Raymond, e V. S. Subrahmanian. "Probabilistic logic programming". Information and Computation 101, n.º 2 (dezembro de 1992): 150–201. http://dx.doi.org/10.1016/0890-5401(92)90061-j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Tyugu, Enn. "Inductive Logic Programming". Knowledge-Based Systems 7, n.º 2 (junho de 1994): 149–50. http://dx.doi.org/10.1016/0950-7051(94)90030-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Baldwin, J. F. "Support logic programming". International Journal of Intelligent Systems 1, n.º 2 (1986): 73–104. http://dx.doi.org/10.1002/int.4550010202.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Bollen, A. W. "Relevant logic programming". Journal of Automated Reasoning 7, n.º 4 (dezembro de 1991): 563–85. http://dx.doi.org/10.1007/bf01880329.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Blair, Howard A., e V. S. Subrahmanian. "Paraconsistent logic programming". Theoretical Computer Science 68, n.º 2 (outubro de 1989): 135–54. http://dx.doi.org/10.1016/0304-3975(89)90126-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Díaz, Jaime, José Luis Carballido e Mauricio Osorio. "Béziau’s SP3A Logic and Logic Programming". Research in Computing Science 148, n.º 3 (31 de dezembro de 2019): 309–20. http://dx.doi.org/10.13053/rcs-148-3-26.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

ANTONIOU, GRIGORIS, DAVID BILLINGTON, GUIDO GOVERNATORI e MICHAEL J. MAHER. "Embedding defeasible logic into logic programming". Theory and Practice of Logic Programming 6, n.º 06 (16 de outubro de 2006): 703–35. http://dx.doi.org/10.1017/s1471068406002778.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Schlipf, John S. "Formalizing a logic for logic programming". Annals of Mathematics and Artificial Intelligence 5, n.º 2-4 (junho de 1992): 279–302. http://dx.doi.org/10.1007/bf01543479.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

OSORIO, MAURICIO, JUAN A. NAVARRO e JOSÉ ARRAZOLA. "Applications of intuitionistic logic in Answer Set Programming". Theory and Practice of Logic Programming 4, n.º 3 (16 de abril de 2004): 325–54. http://dx.doi.org/10.1017/s1471068403001881.

Texto completo da fonte
Resumo:
We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Balbiani, Philippe. "A Modal Semantics of Negation in Logic Programming". Fundamenta Informaticae 16, n.º 3-4 (1 de maio de 1992): 231–62. http://dx.doi.org/10.3233/fi-1992-163-403.

Texto completo da fonte
Resumo:
The beauty of modal logics and their interest lie in their ability to represent such different intensional concepts as knowledge, time, obligation, provability in arithmetic, … according to the properties satisfied by the accessibility relations of their Kripke models (transitivity, reflexivity, symmetry, well-foundedness, …). The purpose of this paper is to study the ability of modal logics to represent the concepts of provability and unprovability in logic programming. The use of modal logic to study the semantics of logic programming with negation is defended with the help of a modal completion formula. This formula is a modal translation of Clack’s formula. It gives soundness and completeness proofs for the negation as failure rule. It offers a formal characterization of unprovability in logic programs. It characterizes as well its stratified semantics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

HUET, GÉRARD. "Special issue on ‘Logical frameworks and metalanguages’". Journal of Functional Programming 13, n.º 2 (março de 2003): 257–60. http://dx.doi.org/10.1017/s0956796802004549.

Texto completo da fonte
Resumo:
There is both a great unity and a great diversity in presentations of logic. The diversity is staggering indeed – propositional logic, first-order logic, higher-order logic belong to one classification; linear logic, intuitionistic logic, classical logic, modal and temporal logics belong to another one. Logical deduction may be presented as a Hilbert style of combinators, as a natural deduction system, as sequent calculus, as proof nets of one variety or other, etc. Logic, originally a field of philosophy, turned into algebra with Boole, and more generally into meta-mathematics with Frege and Heyting. Professional logicians such as Gödel and later Tarski studied mathematical models, consistency and completeness, computability and complexity issues, set theory and foundations, etc. Logic became a very technical area of mathematical research in the last half century, with fine-grained analysis of expressiveness of subtheories of arithmetic or set theory, detailed analysis of well-foundedness through ordinal notations, logical complexity, etc. Meanwhile, computer modelling developed a need for concrete uses of logic, first for the design of computer circuits, then more widely for increasing the reliability of sofware through the use of formal specifications and proofs of correctness of computer programs. This gave rise to more exotic logics, such as dynamic logic, Hoare-style logic of axiomatic semantics, logics of partial values (such as Scott's denotational semantics and Plotkin's domain theory) or of partial terms (such as Feferman's free logic), etc. The first actual attempts at mechanisation of logical reasoning through the resolution principle (automated theorem proving) had been disappointing, but their shortcomings gave rise to a considerable body of research, developing detailed knowledge about equational reasoning through canonical simplification (rewriting theory) and proofs by induction (following Boyer and Moore successful integration of primitive recursive arithmetic within the LISP programming language). The special case of Horn clauses gave rise to a new paradigm of non-deterministic programming, called Logic Programming, developing later into Constraint Programming, blurring further the scope of logic. In order to study knowledge acquisition, researchers in artificial intelligence and computational linguistics studied exotic versions of modal logics such as Montague intentional logic, epistemic logic, dynamic logic or hybrid logic. Some others tried to capture common sense, and modeled the revision of beliefs with so-called non-monotonic logics. For the careful crafstmen of mathematical logic, this was the final outrage, and Girard gave his anathema to such “montres à moutardes”.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Sakama, Chiaki, e Katsumi Inoue. "Abductive logic programming and disjunctive logic programming: their relationship and transferability". Journal of Logic Programming 44, n.º 1-3 (julho de 2000): 75–100. http://dx.doi.org/10.1016/s0743-1066(99)00073-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Williams, H. P. "Logic applied to integer programming and integer programming applied to logic". European Journal of Operational Research 81, n.º 3 (março de 1995): 605–16. http://dx.doi.org/10.1016/0377-2217(93)e0359-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

MARCOPOULOS, ELIAS, e YUANLIN ZHANG. "onlineSPARC: A Programming Environment for Answer Set Programming". Theory and Practice of Logic Programming 19, n.º 2 (14 de novembro de 2018): 262–89. http://dx.doi.org/10.1017/s1471068418000509.

Texto completo da fonte
Resumo:
AbstractRecent progress in logic programming (e.g. the development of the answer set programming (ASP) paradigm) has made it possible to teach it to general undergraduate and even middle/high school students. Given the limited exposure of these students to computer science, the complexity of downloading, installing, and using tools for writing logic programs could be a major barrier for logic programming to reach a much wider audience. We developed onlineSPARC, an online ASP environment with a self-contained file system and a simple interface. It allows users to type/edit logic programs and perform several tasks over programs, including asking a query to a program, getting the answer sets of a program, and producing a drawing/animation based on the answer sets of a program.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Vauzeilles, J., e A. Strauss. "Intuitionistic three-valued logic and logic programming". RAIRO - Theoretical Informatics and Applications 25, n.º 6 (1991): 557–87. http://dx.doi.org/10.1051/ita/1991250605571.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Genito, Daniele, Giangiacomo Gerla e Alessandro Vignes. "Meta-logic programming for a synonymy logic". Soft Computing 14, n.º 3 (27 de fevereiro de 2009): 299–311. http://dx.doi.org/10.1007/s00500-009-0404-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

LEUSCHEL, MICHAEL, e TOM SCHRIJVERS. "Introduction to the 30th International Conference on Logic Programming Special Issue". Theory and Practice of Logic Programming 14, n.º 4-5 (julho de 2014): 401–14. http://dx.doi.org/10.1017/s1471068414000581.

Texto completo da fonte
Resumo:
The 30th edition of the International Conference of Logic Programming took place in Vienna in July 2014 at the Vienna Summer of Logic - the largest scientific conference in the history of logic. Following the initiative in 2010 taken by the Association for Logic Programming and Cambridge University Press, the full papers accepted for the International Conference on Logic Programming again appear as a special issue of Theory and Practice of Logic Programming (TPLP) - the 30th International Conference on Logic Programming Special Issue. Papers describing original, previously unpublished research and not simultaneously submitted for publication elsewhere were solicited in all areas of logic programming including but not restricted to: Theory: Semantic Foundations, Formalisms, Non- monotonic Reasoning, Knowledge Representation; Implementation: Compilation, Memory Management, Virtual Machines, Parallelism; Environments: Program Analysis, Transformation, Validation, Verification, Debugging, Profiling, Testing; Language Issues: Concurrency, Objects, Coordination, Mobility, Higher Order, Types, Modes, Assertions, Programming Techniques; Related Paradigms: Abductive Logic Programming, Inductive Logic Programming, Constraint Logic Programming, Answer-Set Programming; Applications: Databases, Data Integration and Federation, Software Engineering, Natural Language Processing, Web and Semantic Web, Agents, Artificial Intelligence, Bioinformatics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Glasgow, J. I., M. A. Jenkins, E. Blevis e M. P. Feret. "Logic programming with arrays". IEEE Transactions on Knowledge and Data Engineering 3, n.º 3 (1991): 307–19. http://dx.doi.org/10.1109/69.91061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Nguyen, Linh Anh. "Modal logic programming revisited". Journal of Applied Non-Classical Logics 19, n.º 2 (janeiro de 2009): 167–81. http://dx.doi.org/10.3166/jancl.19.167-181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia