Artigos de revistas sobre o tema "Lithium quantification"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Lithium quantification".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Paul, Partha P., Vivek Thampy, Chuntian Cao, Hans-Georg Steinrück, Tanvir R. Tanim, Alison R. Dunlop, Eric J. Dufek et al. "Correction: Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries". Energy & Environmental Science 14, n.º 9 (2021): 5097. http://dx.doi.org/10.1039/d1ee90049h.
Texto completo da fonteVikrant, K. S. N., Eric McShane, Andrew M. Colclasure, Bryan D. McCloskey e Srikanth Allu. "Quantification of Dead Lithium on Graphite Anode under Fast Charging Conditions". Journal of The Electrochemical Society 169, n.º 4 (1 de abril de 2022): 040520. http://dx.doi.org/10.1149/1945-7111/ac61d3.
Texto completo da fonteZhou, Hanwei, Conner Fear, Tapesh Joshi, Judith Jeevarajan e Partha P. Mukherjee. "Interplay of Lithium Plating Quantification on Thermal Safety Characteristics of Lithium-Ion Batteries". ECS Meeting Abstracts MA2022-02, n.º 3 (9 de outubro de 2022): 349. http://dx.doi.org/10.1149/ma2022-023349mtgabs.
Texto completo da fonteKraft, Vadim, Waldemar Weber, Benjamin Streipert, Ralf Wagner, Carola Schultz, Martin Winter e Sascha Nowak. "Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate-based lithium ion battery electrolyte by a developed liquid chromatography-tandem quadrupole mass spectrometry method". RSC Advances 6, n.º 1 (2016): 8–17. http://dx.doi.org/10.1039/c5ra23624j.
Texto completo da fonteDagger, Tim, Jonas Henschel, Babak Rad, Constantin Lürenbaum, Falko M. Schappacher, Martin Winter e Sascha Nowak. "Investigating the lithium ion battery electrolyte additive tris (2,2,2-trifluoroethyl) phosphite by gas chromatography with a flame ionization detector (GC-FID)". RSC Advances 7, n.º 84 (2017): 53048–55. http://dx.doi.org/10.1039/c7ra09476k.
Texto completo da fonteRangarajan, Sobana P., Yevgen Barsukov e Partha P. Mukherjee. "In operando signature and quantification of lithium plating". Journal of Materials Chemistry A 7, n.º 36 (2019): 20683–95. http://dx.doi.org/10.1039/c9ta07314k.
Texto completo da fontePortillo, F. E., J. A. Liendo, A. C. González, D. D. Caussyn, N. R. Fletcher, O. A. Momotyuk, B. T. Roeder et al. "Light element quantification by lithium elastic scattering". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 305 (junho de 2013): 16–21. http://dx.doi.org/10.1016/j.nimb.2013.04.049.
Texto completo da fonteKpetemey, Amen, Sanonka Tchegueni, Magnoudéwa Bassaï Bodjona, Koffi Agbégnigan Degbe, Koffi Kili, Gado Tchangbedji e Rachid Idouhli. "Quantification of Recoverable Components of Spent Lithium-Ion Batteries". Oriental Journal Of Chemistry 39, n.º 4 (30 de agosto de 2023): 925–32. http://dx.doi.org/10.13005/ojc/390414.
Texto completo da fonteBao, Wurigumula, e Ying Shirley Meng. "(Invited) Development and Application of Titration Gas Chromatography in Elucidating the Behavior of Anode in Lithium Batteries". ECS Meeting Abstracts MA2023-01, n.º 2 (28 de agosto de 2023): 633. http://dx.doi.org/10.1149/ma2023-012633mtgabs.
Texto completo da fonteKonz, Zachary M., Brendan M. Wirtz, Andrew M. Colclasure, Ankit Verma, Matthew J. Crafton, Tzu-Yang Huang e Bryan D. McCloskey. "High-Throughput Lithium Plating Quantification for Fast Charging Battery Design". ECS Meeting Abstracts MA2023-01, n.º 2 (28 de agosto de 2023): 503. http://dx.doi.org/10.1149/ma2023-012503mtgabs.
Texto completo da fonteSuryanarayanan, R. "Quantification of Carbamazepine in Tablets by Powder X-ray Diffractometry". Advances in X-ray Analysis 34 (1990): 417–27. http://dx.doi.org/10.1154/s0376030800014737.
Texto completo da fonteTanim, Tanvir R., Eric J. Dufek, Charles C. Dickerson e Sean M. Wood. "Electrochemical Quantification of Lithium Plating: Challenges and Considerations". Journal of The Electrochemical Society 166, n.º 12 (2019): A2689—A2696. http://dx.doi.org/10.1149/2.1581912jes.
Texto completo da fonteBai, Miao, Chao Lyu, Dazhi Yang e Gareth Hinds. "Quantification of Lithium Plating in Lithium-Ion Batteries Based on Impedance Spectrum and Artificial Neural Network". Batteries 9, n.º 7 (1 de julho de 2023): 350. http://dx.doi.org/10.3390/batteries9070350.
Texto completo da fonteXu, Hanying, Ce Han, Wenting Li, Huiyu Li e Xinping Qiu. "Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries". Journal of Power Sources 529 (maio de 2022): 231219. http://dx.doi.org/10.1016/j.jpowsour.2022.231219.
Texto completo da fontePetzl, Mathias, e Michael A. Danzer. "Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries". Journal of Power Sources 254 (maio de 2014): 80–87. http://dx.doi.org/10.1016/j.jpowsour.2013.12.060.
Texto completo da fonteZhou, Hongyao, Haodong Liu, Xing Xing, Zijun Wang, Sicen Yu, Gabriel M. Veith e Ping Liu. "Quantification of the ion transport mechanism in protective polymer coatings on lithium metal anodes". Chemical Science 12, n.º 20 (2021): 7023–32. http://dx.doi.org/10.1039/d0sc06651f.
Texto completo da fonteRifai, Kheireddine, Marc Constantin, Adnan Yilmaz, Lütfü Ç. Özcan, François R. Doucet e Nawfel Azami. "Quantification of Lithium and Mineralogical Mapping in Crushed Ore Samples Using Laser Induced Breakdown Spectroscopy". Minerals 12, n.º 2 (16 de fevereiro de 2022): 253. http://dx.doi.org/10.3390/min12020253.
Texto completo da fonteMd Said e Mohd Tohir. "Prediction of Lithium-ion Battery Thermal Runaway Propagation for Large Scale Applications Fire Hazard Quantification". Processes 7, n.º 10 (5 de outubro de 2019): 703. http://dx.doi.org/10.3390/pr7100703.
Texto completo da fontePaul, Partha P., Vivek Thampy, Chuntian Cao, Hans-Georg Steinrück, Tanvir R. Tanim, Alison R. Dunlop, Eric J. Dufek et al. "Quantification of heterogeneous, irreversible lithium plating in extreme fast charging of lithium-ion batteries". Energy & Environmental Science 14, n.º 9 (2021): 4979–88. http://dx.doi.org/10.1039/d1ee01216a.
Texto completo da fonteWilken, A., V. Kraft, S. Girod, M. Winter e S. Nowak. "A fluoride-selective electrode (Fse) for the quantification of fluoride in lithium-ion battery (Lib) electrolytes". Analytical Methods 8, n.º 38 (2016): 6932–40. http://dx.doi.org/10.1039/c6ay02264b.
Texto completo da fonteHuang, Ming, e Bo Lan. "Quantifying Tortuosity in Porous Lithium-Ion Battery Materials Using Ultrasound". ECS Meeting Abstracts MA2022-02, n.º 6 (9 de outubro de 2022): 591. http://dx.doi.org/10.1149/ma2022-026591mtgabs.
Texto completo da fonteSheikh, Mahsa, Meha Qassem, Iasonas F. Triantis e Panicos A. Kyriacou. "Advances in Therapeutic Monitoring of Lithium in the Management of Bipolar Disorder". Sensors 22, n.º 3 (19 de janeiro de 2022): 736. http://dx.doi.org/10.3390/s22030736.
Texto completo da fonteDanani, Chandan, H. L. Swami, Paritosh Chaudhuri, A. Mutzke, R. Schneider e Manoj Warrier. "Multi-model quantification of defects in irradiated lithium titanate". Fusion Engineering and Design 140 (março de 2019): 92–96. http://dx.doi.org/10.1016/j.fusengdes.2019.02.006.
Texto completo da fonteLi, Na, Zhichao Chu, Chenchen Liu, Shuai Fu, Jinbao Fan, Le Yang, Yikun Wu, Wei-Li Song, Hao-Sen Chen e Shuqiang Jiao. "Quantification of lithium deposition under mechano-electrochemical coupling effect". Journal of Power Sources 594 (fevereiro de 2024): 233979. http://dx.doi.org/10.1016/j.jpowsour.2023.233979.
Texto completo da fonteSchultz, Carola, Sven Vedder, Benjamin Streipert, Martin Winter e Sascha Nowak. "Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS". RSC Advances 7, n.º 45 (2017): 27853–62. http://dx.doi.org/10.1039/c7ra03839a.
Texto completo da fonteOberti, Roberta, Fernando Cá mara, Luisa Ottolini e José Maria Caballero. "Lithium in amphiboles: detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles". European Journal of Mineralogy 15, n.º 2 (31 de março de 2003): 309–19. http://dx.doi.org/10.1127/0935-1221/2003/0015-0309.
Texto completo da fonteMenzel, Jennifer, Hannah Schultz, Vadim Kraft, Juan Pablo Badillo, Martin Winter e Sascha Nowak. "Quantification of ionic organo(fluoro)phosphates in decomposed lithium battery electrolytes". RSC Advances 7, n.º 62 (2017): 39314–24. http://dx.doi.org/10.1039/c7ra07486g.
Texto completo da fonteKim, Sangwook, Zonggen Yi, Tanvir R. Tanim, Ross R. Kunz, Eric J. Dufek, Kevin L. Gering, Peter J. Weddle, Kandler Smith e Bor-Rong Chen. "Physics-Based Methods and Tools for Rapid Classification, Quantification, and Forecasting of Lithium-Ion Battery Aging Modes and Life". ECS Meeting Abstracts MA2022-02, n.º 3 (9 de outubro de 2022): 351. http://dx.doi.org/10.1149/ma2022-023351mtgabs.
Texto completo da fonteWeitzel, Karl-Michael, Johanna Schepp, Jona Schuch, Jan Philipp Hofmann e Stefan Adams. "On the Description of Electrode Materials Based on the Quantification of Ionic and Electronic Work Functions". ECS Meeting Abstracts MA2023-02, n.º 2 (22 de dezembro de 2023): 187. http://dx.doi.org/10.1149/ma2023-022187mtgabs.
Texto completo da fonteCiampolillo, Maria Vittoria, Annamaria Zaltron, Marco Bazzan, Nicola Argiolas e Cinzia Sada. "Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption". Applied Spectroscopy 65, n.º 2 (fevereiro de 2011): 216–20. http://dx.doi.org/10.1366/10-06015.
Texto completo da fonteLiu, Danny X., Jinghui Wang, Ke Pan, Jie Qiu, Marcello Canova, Lei R. Cao e Anne C. Co. "In Situ Quantification and Visualization of Lithium Transport with Neutrons". Angewandte Chemie International Edition 53, n.º 36 (14 de julho de 2014): 9498–502. http://dx.doi.org/10.1002/anie.201404197.
Texto completo da fonteLiu, Danny X., Jinghui Wang, Ke Pan, Jie Qiu, Marcello Canova, Lei R. Cao e Anne C. Co. "In Situ Quantification and Visualization of Lithium Transport with Neutrons". Angewandte Chemie 126, n.º 36 (14 de julho de 2014): 9652–56. http://dx.doi.org/10.1002/ange.201404197.
Texto completo da fonteMcShane, Eric J., Andrew M. Colclasure, David Emory Brown, Zachary M. Konz, Kandler Smith e Bryan D. McCloskey. "Quantification of Inactive Lithium, Solid Carbonate Species, and Lithium Acetylide on Graphite Electrodes after Fast Charging". ECS Meeting Abstracts MA2020-02, n.º 3 (23 de novembro de 2020): 542. http://dx.doi.org/10.1149/ma2020-023542mtgabs.
Texto completo da fonteXia, C., C. Y. Kwok e L. F. Nazar. "A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide". Science 361, n.º 6404 (23 de agosto de 2018): 777–81. http://dx.doi.org/10.1126/science.aas9343.
Texto completo da fonteMöller, Sören, Takahiro Satoh, Yasuyuki Ishii, Britta Teßmer, Rayan Guerdelli, Tomihiro Kamiya, Kazuhisa Fujita et al. "Absolute Local Quantification of Li as Function of State-of-Charge in All-Solid-State Li Batteries via 2D MeV Ion-Beam Analysis". Batteries 7, n.º 2 (20 de junho de 2021): 41. http://dx.doi.org/10.3390/batteries7020041.
Texto completo da fonteZanini, Leonardo, Annamaria Zaltron, Enrico Turato, Riccardo Zamboni e Cinzia Sada. "Opto-Microfluidic Integration of the Bradford Protein Assay in Lithium Niobate Lab-on-a-Chip". Sensors 22, n.º 3 (2 de fevereiro de 2022): 1144. http://dx.doi.org/10.3390/s22031144.
Texto completo da fonteOtten, Abigail, Kelly Nieto e Amy L. Prieto. "Coupling Quantification of Pulverization with Galvanostatic Cycling of Bulk Film Alloy-Type Anodes". ECS Meeting Abstracts MA2022-02, n.º 29 (9 de outubro de 2022): 2587. http://dx.doi.org/10.1149/ma2022-02292587mtgabs.
Texto completo da fonteImaz, M. L., L. Garcia-Esteve, M. Torra, D. Soy, K. Langohr e R. Martin-Santos. "Lithium placental passage at delivery: an observational study". European Psychiatry 65, S1 (junho de 2022): S401—S402. http://dx.doi.org/10.1192/j.eurpsy.2022.1017.
Texto completo da fonteMeng, Shirley. "Si Anode for All Solid State Batteries". ECS Meeting Abstracts MA2022-02, n.º 3 (9 de outubro de 2022): 249. http://dx.doi.org/10.1149/ma2022-023249mtgabs.
Texto completo da fonteScharpmann, Philippa, Robert Leonhardt, Tim Tichter, Anita Schmidt e Jonas Krug von Nidda. "In-Situ Quantification of the Ageing Dynamics in Lithium-Ion Cells up to Failure-Near Conditions". ECS Meeting Abstracts MA2023-02, n.º 3 (22 de dezembro de 2023): 449. http://dx.doi.org/10.1149/ma2023-023449mtgabs.
Texto completo da fonteHsieh, Yi-Chen, Marco Leißing, Sascha Nowak, Bing-Joe Hwang, Martin Winter e Gunther Brunklaus. "Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy". Cell Reports Physical Science 1, n.º 8 (agosto de 2020): 100139. http://dx.doi.org/10.1016/j.xcrp.2020.100139.
Texto completo da fonteBianconi, M., N. Argiolas, M. Bazzan, G. G. Bentini, A. Cerutti, M. Chiarini, G. Pennestrì, P. Mazzoldi e C. Sada. "Quantification of nuclear damage in high energy ion implanted lithium niobate". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 257, n.º 1-2 (abril de 2007): 597–600. http://dx.doi.org/10.1016/j.nimb.2007.01.046.
Texto completo da fonteDumaresq, Nicolas, Raynald Gauvin e Karim Zaghib. "Low-Voltage STEM-Eels Quantification for Lithium Ion Battery Material Characterization". ECS Meeting Abstracts MA2020-01, n.º 4 (1 de maio de 2020): 525. http://dx.doi.org/10.1149/ma2020-014525mtgabs.
Texto completo da fonteImaz, M. L., M. Torra, D. Soy, K. Langorh, L. Garcia-Esteve e R. Martin-Santos. "Lithium placental passage at delivery and neonatal outcomes: A retrospective observational study". European Psychiatry 64, S1 (abril de 2021): S203. http://dx.doi.org/10.1192/j.eurpsy.2021.540.
Texto completo da fonteZhu, Changlian, Cuicui Xie, Kai Zhou e Klas Blomgren. "Lithium treatment reduced microglia activation and inflammation after irradiation to the immature brain (P6256)". Journal of Immunology 190, n.º 1_Supplement (1 de maio de 2013): 115.24. http://dx.doi.org/10.4049/jimmunol.190.supp.115.24.
Texto completo da fontePöllmann, Herbert, e Uwe König. "Monitoring of Lithium Contents in Lithium Ores and Concentrate-Assessment Using X-ray Diffraction (XRD)". Minerals 11, n.º 10 (28 de setembro de 2021): 1058. http://dx.doi.org/10.3390/min11101058.
Texto completo da fonteSurgiewicz, Jolanta. "Lithium hydride. Determination in workplaces air". Podstawy i Metody Oceny Środowiska Pracy 33, n.º 3(93) (10 de setembro de 2017): 151–60. http://dx.doi.org/10.5604/01.3001.0010.4342.
Texto completo da fonteFurtmair, Michael, Anika Wolters, Sanja Simic, Markus Thannhuber, Günther Ruhl e Michael Sternad. "Tracing the Powerfade: Location and Quantification of the Fluoridic Solid Electrolyte Interphase on Graphite Anodes". ECS Meeting Abstracts MA2023-01, n.º 7 (28 de agosto de 2023): 2860. http://dx.doi.org/10.1149/ma2023-0172860mtgabs.
Texto completo da fonteYang, Xiao-Guang, Shanhai Ge, Teng Liu, Yongjun Leng e Chao-Yang Wang. "A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells". Journal of Power Sources 395 (agosto de 2018): 251–61. http://dx.doi.org/10.1016/j.jpowsour.2018.05.073.
Texto completo da fonteImaz, M. L., M. Torra, D. Soy, K. Langorh, L. Garcia-Esteve e R. Martin-Santos. "Infant exposure to lithium through breast milk". European Psychiatry 64, S1 (abril de 2021): S180. http://dx.doi.org/10.1192/j.eurpsy.2021.477.
Texto completo da fonte