Artigos de revistas sobre o tema "Lithium-free"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Lithium-free".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Shen, Kai, Zhenjiang Cao, Yongzheng Shi, Yongzheng Zhang, Bin Li e Shubin Yang. "3D Printing Lithium Salt towards Dendrite-free Lithium Anodes". Energy Storage Materials 35 (março de 2021): 108–13. http://dx.doi.org/10.1016/j.ensm.2020.11.022.
Texto completo da fonteBalaish, Moran, Emanuel Peled, Diana Golodnitsky e Yair Ein-Eli. "Liquid-Free Lithium-Oxygen Batteries". Angewandte Chemie 127, n.º 2 (3 de outubro de 2014): 446–50. http://dx.doi.org/10.1002/ange.201408008.
Texto completo da fonteWinterkorn, Martin M., e Tim Holme. "(Invited) Li-Free Anode Development at Quantumscape". ECS Meeting Abstracts MA2022-02, n.º 47 (9 de outubro de 2022): 1733. http://dx.doi.org/10.1149/ma2022-02471733mtgabs.
Texto completo da fonteGervillie, Charlotte, Louis Ah, Alex Ruili Liu, Chen-Jui Huang e Shirley Meng. "Deciphering the Impact of the Active Lithium Reservoir in Anode-Free Pouch Cells". ECS Meeting Abstracts MA2024-02, n.º 7 (22 de novembro de 2024): 889. https://doi.org/10.1149/ma2024-027889mtgabs.
Texto completo da fonteKalinina, A. A., I. A. Konopkina, O. V. Vakhnina, I. V. Koroleva, K. B. Zhogova e S. A. Annikova. "The choice of methods for lithium and boron determination in lithium-boron alloys". Industrial laboratory. Diagnostics of materials 89, n.º 1 (21 de janeiro de 2023): 20–27. http://dx.doi.org/10.26896/1028-6861-2023-89-1-20-27.
Texto completo da fonteChen, Xiang, Zhuqing Zhao, Jiakang Qu, Beilei Zhang, Xueyong Ding, Yunfeng Geng, Hongwei Xie, Dihua Wang e Huayi Yin. "Electrolysis of Lithium-Free Molten Carbonates". ACS Sustainable Chemistry & Engineering 9, n.º 11 (11 de março de 2021): 4167–74. http://dx.doi.org/10.1021/acssuschemeng.1c00028.
Texto completo da fonteKutbee, Arwa T., Mohamed T. Ghoneim, Sally M. Ahmad e Muhammad M. Hussain. "Free-Form Flexible Lithium-Ion Microbattery". IEEE Transactions on Nanotechnology 15, n.º 3 (maio de 2016): 402–8. http://dx.doi.org/10.1109/tnano.2016.2537338.
Texto completo da fonteSchollhammer, Jean, Mohammad Amin Baghban e Katia Gallo. "Modal birefringence-free lithium niobate waveguides". Optics Letters 42, n.º 18 (11 de setembro de 2017): 3578. http://dx.doi.org/10.1364/ol.42.003578.
Texto completo da fonteScheers, Johan, Du-Hyun Lim, Jae-Kwang Kim, Elie Paillard, Wesley A. Henderson, Patrik Johansson, Jou-Hyeon Ahn e Per Jacobsson. "All fluorine-free lithium battery electrolytes". Journal of Power Sources 251 (abril de 2014): 451–58. http://dx.doi.org/10.1016/j.jpowsour.2013.11.042.
Texto completo da fontePrachi Patel, special to C&EN. "Lithium-ion batteries go cobalt-free". C&EN Global Enterprise 98, n.º 29 (27 de julho de 2020): 9. http://dx.doi.org/10.1021/cen-09829-scicon5.
Texto completo da fonteZheng, Zhaozhu, Shaozhe Guo, Yawen Liu, Jianbing Wu, Gang Li, Meng Liu, Xiaoqin Wang e David Kaplan. "Lithium-free processing of silk fibroin". Journal of Biomaterials Applications 31, n.º 3 (9 de julho de 2016): 450–63. http://dx.doi.org/10.1177/0885328216653259.
Texto completo da fonteQian, Jiangfeng, Brian D. Adams, Jianming Zheng, Wu Xu, Wesley A. Henderson, Jun Wang, Mark E. Bowden, Suochang Xu, Jianzhi Hu e Ji-Guang Zhang. "Anode-Free Rechargeable Lithium Metal Batteries". Advanced Functional Materials 26, n.º 39 (18 de agosto de 2016): 7094–102. http://dx.doi.org/10.1002/adfm.201602353.
Texto completo da fonteAssegie, Addisu Alemayehu, Cheng-Chu Chung, Meng-Che Tsai, Wei-Nien Su, Chun-Wei Chen e Bing-Joe Hwang. "Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries". Nanoscale 11, n.º 6 (2019): 2710–20. http://dx.doi.org/10.1039/c8nr06980h.
Texto completo da fonteZhang, Jian, Abrar Khan, Xiaoyuan Liu, Yuban Lei, Shurong Du, Le Lv, Hailei Zhao e Dawei Luo. "Research Progress of Anode-Free Lithium Metal Batteries". Crystals 12, n.º 9 (2 de setembro de 2022): 1241. http://dx.doi.org/10.3390/cryst12091241.
Texto completo da fonteKubota, K., e H. Matsumoto. "Solvent Free Lithium Molten Salt as Electrolyte of Lithium Secondary Battery". ECS Transactions 62, n.º 1 (17 de novembro de 2014): 231–34. http://dx.doi.org/10.1149/06201.0231ecst.
Texto completo da fonteXu, Ying, Tao Li, Liping Wang e Yijin Kang. "Interlayered Dendrite‐Free Lithium Plating for High‐Performance Lithium‐Metal Batteries". Advanced Materials 31, n.º 29 (3 de junho de 2019): 1901662. http://dx.doi.org/10.1002/adma.201901662.
Texto completo da fonteLouli, A. J., A. Eldesoky, Jack deGooyer, Matt Coon, C. P. Aiken, Z. Simunovic, M. Metzger e J. R. Dahn. "Different Positive Electrodes for Anode-Free Lithium Metal Cells". Journal of The Electrochemical Society 169, n.º 4 (1 de abril de 2022): 040517. http://dx.doi.org/10.1149/1945-7111/ac62c4.
Texto completo da fonteCheng, Xin-Bing, Ting-Zheng Hou, Rui Zhang, Hong-Jie Peng, Chen-Zi Zhao, Jia-Qi Huang e Qiang Zhang. "Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries". Advanced Materials 28, n.º 15 (22 de fevereiro de 2016): 2888–95. http://dx.doi.org/10.1002/adma.201506124.
Texto completo da fonteZhao, Pei, Jun Pan, Dongqi Zhang, Yufeng Tang, Zhixin Tai, Yajie Liu, Hong Gao e Fuqiang Huang. "Designs of Anode-Free Lithium-Ion Batteries". Batteries 9, n.º 7 (17 de julho de 2023): 381. http://dx.doi.org/10.3390/batteries9070381.
Texto completo da fonteZhu, Mengqi, Chuyi Cai, Xuran Li, Chunwen Shi e Jindan Zhang. "Interfacial MXene engineering enabled lamellar lithium nucleation for dendrite-free lithium anodes". Journal of Power Sources 633 (março de 2025): 236451. https://doi.org/10.1016/j.jpowsour.2025.236451.
Texto completo da fonteXiang, Jingwei, Ying Zhao, Lixia Yuan, Chaoji Chen, Yue Shen, Fei Hu, Zhangxiang Hao, Jing Liu, Baixiang Xu e Yunhui Huang. "A strategy of selective and dendrite-free lithium deposition for lithium batteries". Nano Energy 42 (dezembro de 2017): 262–68. http://dx.doi.org/10.1016/j.nanoen.2017.10.065.
Texto completo da fonteLee, Yong-Gun, Saebom Ryu, Toshinori Sugimoto, Taehwan Yu, Won-seok Chang, Yooseong Yang, Changhoon Jung et al. "Dendrite-Free Lithium Deposition for Lithium Metal Anodes with Interconnected Microsphere Protection". Chemistry of Materials 29, n.º 14 (17 de julho de 2017): 5906–14. http://dx.doi.org/10.1021/acs.chemmater.7b01304.
Texto completo da fonteZhang, Fei, Ping Liu, Yue Tian, Jinfeng Wu, Xuewei Wang, Huili Li e Xiaoyan Liu. "Uniform lithium nucleation/deposition regulated by N/S co-doped carbon nanospheres towards ultra-stable lithium metal anodes". Journal of Materials Chemistry A 10, n.º 3 (2022): 1463–72. http://dx.doi.org/10.1039/d1ta09575g.
Texto completo da fonteHuang, Yu-Kai, e Leif Nyholm. "Influence of Lithium Diffusion into Copper Current Collectors on Lithium Electrodeposition in Anode-Free Lithium-Metal Batteries". ECS Meeting Abstracts MA2023-02, n.º 20 (22 de dezembro de 2023): 1275. http://dx.doi.org/10.1149/ma2023-02201275mtgabs.
Texto completo da fonteHoriike, Hiroshi, Mizuho Ida, Toshiyuki Iida, Shoji Inoue, Seiji Miyamoto, Takeo Muroga, Hideo Nakamura, Hiroo Nakamura, Izuru Matsushita e Nobuo Yamaoka. "Lithium free surface flow experiment for IFMIF". Fusion Engineering and Design 66-68 (setembro de 2003): 199–204. http://dx.doi.org/10.1016/s0920-3796(03)00205-9.
Texto completo da fonteXie, Hui, Jose A. Alonso, Yutao Li, Maria T. Fernández-Díaz e John B. Goodenough. "Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12". Chemistry of Materials 23, n.º 16 (23 de agosto de 2011): 3587–89. http://dx.doi.org/10.1021/cm201671k.
Texto completo da fonteParekh, Mihit H., P. Manikandan e Vilas G. Pol. "In Operando Lithiation of Lithium Free Cathodes". ECS Meeting Abstracts MA2020-02, n.º 1 (23 de novembro de 2020): 83. http://dx.doi.org/10.1149/ma2020-02183mtgabs.
Texto completo da fonte张, 宇昊. "Advances on Anode Free Lithium Metal Batteries". Journal of Organic Chemistry Research 11, n.º 04 (2023): 245–62. http://dx.doi.org/10.12677/jocr.2023.114024.
Texto completo da fonteHwang, Bing-Joe. "Development of Anode-Free Lithium Metal Batteries". ECS Meeting Abstracts MA2023-02, n.º 4 (22 de dezembro de 2023): 641. http://dx.doi.org/10.1149/ma2023-024641mtgabs.
Texto completo da fonteLiu, Sheng, Xudong Yu, Yu Yan, Ting Zeng, Xinxiang Wang, Guilei Tian, Chuan Wang, Shuhan Wang, Ying Zeng e Chaozhu Shu. "Dendrite-free lithium deposition enabled by interfacial regulation via dipole-dipole interaction in anode-free lithium metal batteries". Energy Storage Materials 62 (setembro de 2023): 102959. http://dx.doi.org/10.1016/j.ensm.2023.102959.
Texto completo da fonteAlexander, George, e Eric D. Wachsman. "Enabling Lithium-Free Batteries through Newly Developed Lithium-Garnet with Mixed Ion and Electron Conduction". ECS Meeting Abstracts MA2024-02, n.º 8 (22 de novembro de 2024): 1222. https://doi.org/10.1149/ma2024-0281222mtgabs.
Texto completo da fonteRamsbottom, C. A., e K. L. Bell. "The continuous free–free absorption coefficient of the negative lithium ion". Physica Scripta 54, n.º 3 (1 de setembro de 1996): 250–53. http://dx.doi.org/10.1088/0031-8949/54/3/004.
Texto completo da fonteGalashev, Alexander, e Alexey Vorob'ev. "An Ab Initio Study of Lithization of Two-Dimensional Silicon–Carbon Anode Material for Lithium-Ion Batteries". Materials 14, n.º 21 (4 de novembro de 2021): 6649. http://dx.doi.org/10.3390/ma14216649.
Texto completo da fonteKamenetskikh, Alexander, Nikolay Gavrilov, Alexey Ershov e Petr Tretnikov. "Effect of the Degree of Li3PO4 Vapor Dissociation on the Ionic Conductivity of LiPON Thin Films". Membranes 13, n.º 10 (23 de outubro de 2023): 847. http://dx.doi.org/10.3390/membranes13100847.
Texto completo da fonteLi, Bo-Quan, Xiao-Ru Chen, Xiang Chen, Chang-Xin Zhao, Rui Zhang, Xin-Bing Cheng e Qiang Zhang. "Favorable Lithium Nucleation on Lithiophilic Framework Porphyrin for Dendrite-Free Lithium Metal Anodes". Research 2019 (6 de janeiro de 2019): 1–11. http://dx.doi.org/10.34133/2019/4608940.
Texto completo da fonteLi, Bo-Quan, Xiao-Ru Chen, Xiang Chen, Chang-Xin Zhao, Rui Zhang, Xin-Bing Cheng e Qiang Zhang. "Favorable Lithium Nucleation on Lithiophilic Framework Porphyrin for Dendrite-Free Lithium Metal Anodes". Research 2019 (6 de janeiro de 2019): 1–11. http://dx.doi.org/10.1155/2019/4608940.
Texto completo da fonteKim, Kwiyong, Yifu Chen, Jong-In Han, Hyung Chul Yoon e Wenzhen Li. "Lithium-mediated ammonia synthesis from water and nitrogen: a membrane-free approach enabled by an immiscible aqueous/organic hybrid electrolyte system". Green Chemistry 21, n.º 14 (2019): 3839–45. http://dx.doi.org/10.1039/c9gc01338e.
Texto completo da fonteSu, Laisuo, Harry Charalambous, Zehao Cui e Arumugam Manthiram. "Correction: High-efficiency, anode-free lithium–metal batteries with a close-packed homogeneous lithium morphology". Energy & Environmental Science 15, n.º 4 (2022): 1694. http://dx.doi.org/10.1039/d2ee90015g.
Texto completo da fonteNanda, Sanjay, e Arumugam Manthiram. "Lithium degradation in lithium–sulfur batteries: insights into inventory depletion and interphasial evolution with cycling". Energy & Environmental Science 13, n.º 8 (2020): 2501–14. http://dx.doi.org/10.1039/d0ee01074j.
Texto completo da fonteHoashi, Eiji, Hirokazu Sugiura, Sachiko Yoshihashi-Suzuki, Takuji Kanemura, Hiroo Kondo, Nobuo Yamaoka e Hiroshi Horiike. "ICONE19-44185 Study on Surface Wave Characteristics of Free Surface Flow of Lithium for IFMIF". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1944. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1944_58.
Texto completo da fonteRodriguez, Rodrigo, Ruth A. Edison, Ryan M. Stephens, Ho-Hyun Sun, Adam Heller e C. Buddie Mullins. "Separator-free and concentrated LiNO3 electrolyte cells enable uniform lithium electrodeposition". Journal of Materials Chemistry A 8, n.º 7 (2020): 3999–4006. http://dx.doi.org/10.1039/c9ta10929c.
Texto completo da fonteLi, Zhen, I.-Chun Chen, Li Cao, Xiaowei Liu, Kuo-Wei Huang e Zhiping Lai. "Lithium extraction from brine through a decoupled and membrane-free electrochemical cell design". Science 385, n.º 6716 (27 de setembro de 2024): 1438–44. http://dx.doi.org/10.1126/science.adg8487.
Texto completo da fonteFan, Austin, Zhuo Li e Kelsey Hatzell. "Operando Quantification of Dynamic Lithium Active Area Growth in Zero-Excess-Lithium Solid-State Batteries". ECS Meeting Abstracts MA2024-02, n.º 4 (22 de novembro de 2024): 418. https://doi.org/10.1149/ma2024-024418mtgabs.
Texto completo da fonteWang, Jian, Hongzhen Lin e Stefano Passerini. "Construction of Dendrite-Free Metallic Lithium Anodes: From Static Lithiophilic Adsorption to Dynamic Electrochemical Diffusion Kinetics". ECS Meeting Abstracts MA2023-02, n.º 5 (22 de dezembro de 2023): 831. http://dx.doi.org/10.1149/ma2023-025831mtgabs.
Texto completo da fonteWeldeyohannes, Haile Hisho, Wei-Nien Su e Bing-Joe Hwang. "Regulating Lithium Metal Deposition for Safe Cell Operation and to Extend Cyclic Performance of an Anode-Free Lithium Metal Battery". ECS Meeting Abstracts MA2022-01, n.º 2 (7 de julho de 2022): 426. http://dx.doi.org/10.1149/ma2022-012426mtgabs.
Texto completo da fonteAhmad, Zeeshan, Zijian Hong e Venkatasubramanian Viswanathan. "Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries". Proceedings of the National Academy of Sciences 117, n.º 43 (9 de outubro de 2020): 26672–80. http://dx.doi.org/10.1073/pnas.2008841117.
Texto completo da fonteKraszewska, Agnieszka, Ewa Ferensztajn-Rochowiak e Janusz Rybakowski. "The effect of including other psychotropic medications into a long-term bipolar disorder lithium treatment on thyroid function". Pharmacotherapy in Psychiatry and Neurology 35, n.º 2 (2019): 111–19. http://dx.doi.org/10.33450/fpn.2019.08.001.
Texto completo da fonteBhargav, Amruth, Wei Guo e Yongzhu Fu. "Chemically synthesized lithium peroxide composite cathodes for closed system Li–O2 batteries". Chemical Communications 52, n.º 33 (2016): 5678–81. http://dx.doi.org/10.1039/c6cc01547f.
Texto completo da fonteLee, Dongsoo, Seho Sun, Hyunjung Park, Jeongheon Kim, Keemin Park, Insung Hwang, Yongmin Jung, Taeseup Song e Ungyu Paik. "Stable artificial solid electrolyte interphase with lithium selenide and lithium chloride for dendrite-free lithium metal anodes". Journal of Power Sources 506 (setembro de 2021): 230158. http://dx.doi.org/10.1016/j.jpowsour.2021.230158.
Texto completo da fonteGaillard, C. A., H. A. Koomans, A. J. Rabelink e E. J. Mees. "Effects of indomethacin on renal response to atrial natriuretic peptide". American Journal of Physiology-Renal Physiology 253, n.º 5 (1 de novembro de 1987): F868—F873. http://dx.doi.org/10.1152/ajprenal.1987.253.5.f868.
Texto completo da fonte