Artigos de revistas sobre o tema "Lipschitz neural network"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Lipschitz neural network".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhu, Zelong, Chunna Zhao e Yaqun Huang. "Fractional order Lipschitz recurrent neural network with attention for long time series prediction". Journal of Physics: Conference Series 2813, n.º 1 (1 de agosto de 2024): 012015. http://dx.doi.org/10.1088/1742-6596/2813/1/012015.
Texto completo da fonteZhang, Huan, Pengchuan Zhang e Cho-Jui Hsieh. "RecurJac: An Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural Networks and Its Applications". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 5757–64. http://dx.doi.org/10.1609/aaai.v33i01.33015757.
Texto completo da fonteAraujo, Alexandre, Benjamin Negrevergne, Yann Chevaleyre e Jamal Atif. "On Lipschitz Regularization of Convolutional Layers using Toeplitz Matrix Theory". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 8 (18 de maio de 2021): 6661–69. http://dx.doi.org/10.1609/aaai.v35i8.16824.
Texto completo da fonteXu, Yuhui, Wenrui Dai, Yingyong Qi, Junni Zou e Hongkai Xiong. "Iterative Deep Neural Network Quantization With Lipschitz Constraint". IEEE Transactions on Multimedia 22, n.º 7 (julho de 2020): 1874–88. http://dx.doi.org/10.1109/tmm.2019.2949857.
Texto completo da fonteMohammad, Ibtihal J. "Neural Networks of the Rational r-th Powers of the Multivariate Bernstein Operators". BASRA JOURNAL OF SCIENCE 40, n.º 2 (1 de setembro de 2022): 258–73. http://dx.doi.org/10.29072/basjs.20220201.
Texto completo da fonteIbtihal.J.M e Ali J. Mohammad. "Neural Network of Multivariate Square Rational Bernstein Operators with Positive Integer Parameter". European Journal of Pure and Applied Mathematics 15, n.º 3 (31 de julho de 2022): 1189–200. http://dx.doi.org/10.29020/nybg.ejpam.v15i3.4425.
Texto completo da fonteLiu, Kanglin, e Guoping Qiu. "Lipschitz constrained GANs via boundedness and continuity". Neural Computing and Applications 32, n.º 24 (24 de maio de 2020): 18271–83. http://dx.doi.org/10.1007/s00521-020-04954-z.
Texto completo da fonteOthmani, S., N. E. Tatar e A. Khemmoudj. "Asymptotic behavior of a BAM neural network with delays of distributed type". Mathematical Modelling of Natural Phenomena 16 (2021): 29. http://dx.doi.org/10.1051/mmnp/2021023.
Texto completo da fonteXia, Youshen. "An Extended Projection Neural Network for Constrained Optimization". Neural Computation 16, n.º 4 (1 de abril de 2004): 863–83. http://dx.doi.org/10.1162/089976604322860730.
Texto completo da fonteLi, Peiluan, Yuejing Lu, Changjin Xu e Jing Ren. "Bifurcation Phenomenon and Control Technique in Fractional BAM Neural Network Models Concerning Delays". Fractal and Fractional 7, n.º 1 (22 de dezembro de 2022): 7. http://dx.doi.org/10.3390/fractalfract7010007.
Texto completo da fonteWei Bian e Xiaojun Chen. "Smoothing Neural Network for Constrained Non-Lipschitz Optimization With Applications". IEEE Transactions on Neural Networks and Learning Systems 23, n.º 3 (março de 2012): 399–411. http://dx.doi.org/10.1109/tnnls.2011.2181867.
Texto completo da fonteChen, Xin, Yujuan Si, Zhanyuan Zhang, Wenke Yang e Jianchao Feng. "Improving Adversarial Robustness of ECG Classification Based on Lipschitz Constraints and Channel Activation Suppression". Sensors 24, n.º 9 (6 de maio de 2024): 2954. http://dx.doi.org/10.3390/s24092954.
Texto completo da fonteZhang, Chi, Wenjie Ruan e Peipei Xu. "Reachability Analysis of Neural Network Control Systems". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 12 (26 de junho de 2023): 15287–95. http://dx.doi.org/10.1609/aaai.v37i12.26783.
Texto completo da fonteYu, Hongshan, Jinzhu Peng e Yandong Tang. "Identification of Nonlinear Dynamic Systems Using Hammerstein-Type Neural Network". Mathematical Problems in Engineering 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/959507.
Texto completo da fonteXin, YU, WU Lingzhen, XIE Mian, WANG Yanlin, XU Liuming, LU Huixia e XU Chenhua. "Smoothing Neural Network for Non‐Lipschitz Optimization with Linear Inequality Constraints". Chinese Journal of Electronics 30, n.º 4 (julho de 2021): 634–43. http://dx.doi.org/10.1049/cje.2021.05.005.
Texto completo da fonteZhao, Chunna, Junjie Ye, Zelong Zhu e Yaqun Huang. "FLRNN-FGA: Fractional-Order Lipschitz Recurrent Neural Network with Frequency-Domain Gated Attention Mechanism for Time Series Forecasting". Fractal and Fractional 8, n.º 7 (22 de julho de 2024): 433. http://dx.doi.org/10.3390/fractalfract8070433.
Texto completo da fonteLiang, Youwei, e Dong Huang. "Large Norms of CNN Layers Do Not Hurt Adversarial Robustness". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 10 (18 de maio de 2021): 8565–73. http://dx.doi.org/10.1609/aaai.v35i10.17039.
Texto completo da fonteZhuo, Li’an, Baochang Zhang, Chen Chen, Qixiang Ye, Jianzhuang Liu e David Doermann. "Calibrated Stochastic Gradient Descent for Convolutional Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 9348–55. http://dx.doi.org/10.1609/aaai.v33i01.33019348.
Texto completo da fonteLippl, Samuel, Benjamin Peters e Nikolaus Kriegeskorte. "Can neural networks benefit from objectives that encourage iterative convergent computations? A case study of ResNets and object classification". PLOS ONE 19, n.º 3 (21 de março de 2024): e0293440. http://dx.doi.org/10.1371/journal.pone.0293440.
Texto completo da fonteFeyzdar, Mahdi, Ahmad Reza Vali e Valiollah Babaeipour. "Identification and Optimization of Recombinant E. coli Fed-Batch Fermentation Producing γ-Interferon Protein". International Journal of Chemical Reactor Engineering 11, n.º 1 (18 de junho de 2013): 123–34. http://dx.doi.org/10.1515/ijcre-2012-0081.
Texto completo da fonteStamova, Ivanka, Trayan Stamov e Gani Stamov. "Lipschitz stability analysis of fractional-order impulsive delayed reaction-diffusion neural network models". Chaos, Solitons & Fractals 162 (setembro de 2022): 112474. http://dx.doi.org/10.1016/j.chaos.2022.112474.
Texto completo da fonteChen, Yu-Wen, Ming-Li Chiang e Li-Chen Fu. "Adaptive Formation Control for Multiple Quadrotors with Nonlinear Uncertainties Using Lipschitz Neural Network". IFAC-PapersOnLine 56, n.º 2 (2023): 8714–19. http://dx.doi.org/10.1016/j.ifacol.2023.10.053.
Texto completo da fonteLi, Wenjing, Wei Bian e Xiaoping Xue. "Projected Neural Network for a Class of Non-Lipschitz Optimization Problems With Linear Constraints". IEEE Transactions on Neural Networks and Learning Systems 31, n.º 9 (setembro de 2020): 3361–73. http://dx.doi.org/10.1109/tnnls.2019.2944388.
Texto completo da fonteAkrour, Riad, Asma Atamna e Jan Peters. "Convex optimization with an interpolation-based projection and its application to deep learning". Machine Learning 110, n.º 8 (19 de julho de 2021): 2267–89. http://dx.doi.org/10.1007/s10994-021-06037-z.
Texto completo da fonteHumphries, Usa, Grienggrai Rajchakit, Pramet Kaewmesri, Pharunyou Chanthorn, Ramalingam Sriraman, Rajendran Samidurai e Chee Peng Lim. "Global Stability Analysis of Fractional-Order Quaternion-Valued Bidirectional Associative Memory Neural Networks". Mathematics 8, n.º 5 (14 de maio de 2020): 801. http://dx.doi.org/10.3390/math8050801.
Texto completo da fonteBensidhoum, Tarek, Farah Bouakrif e Michel Zasadzinski. "Iterative learning radial basis function neural networks control for unknown multi input multi output nonlinear systems with unknown control direction". Transactions of the Institute of Measurement and Control 41, n.º 12 (19 de fevereiro de 2019): 3452–67. http://dx.doi.org/10.1177/0142331219826659.
Texto completo da fonteZhang, Fan, Heng-You Lan e Hai-Yang Xu. "Generalized Hukuhara Weak Solutions for a Class of Coupled Systems of Fuzzy Fractional Order Partial Differential Equations without Lipschitz Conditions". Mathematics 10, n.º 21 (30 de outubro de 2022): 4033. http://dx.doi.org/10.3390/math10214033.
Texto completo da fonteLaurel, Jacob, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh e Sasa Misailovic. "A general construction for abstract interpretation of higher-order automatic differentiation". Proceedings of the ACM on Programming Languages 6, OOPSLA2 (31 de outubro de 2022): 1007–35. http://dx.doi.org/10.1145/3563324.
Texto completo da fonteTatar, Nasser-Eddine. "Long Time Behavior for a System of Differential Equations with Non-Lipschitzian Nonlinearities". Advances in Artificial Neural Systems 2014 (14 de setembro de 2014): 1–7. http://dx.doi.org/10.1155/2014/252674.
Texto completo da fonteLi, Jia, Cong Fang e Zhouchen Lin. "Lifted Proximal Operator Machines". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 4181–88. http://dx.doi.org/10.1609/aaai.v33i01.33014181.
Texto completo da fonteCantarini, Marco, Lucian Coroianu, Danilo Costarelli, Sorin G. Gal e Gianluca Vinti. "Inverse Result of Approximation for the Max-Product Neural Network Operators of the Kantorovich Type and Their Saturation Order". Mathematics 10, n.º 1 (25 de dezembro de 2021): 63. http://dx.doi.org/10.3390/math10010063.
Texto completo da fonteZhao, Liquan, e Yan Liu. "Spectral Normalization for Domain Adaptation". Information 11, n.º 2 (27 de janeiro de 2020): 68. http://dx.doi.org/10.3390/info11020068.
Texto completo da fontePantoja-Garcia, Luis, Vicente Parra-Vega, Rodolfo Garcia-Rodriguez e Carlos Ernesto Vázquez-García. "A Novel Actor—Critic Motor Reinforcement Learning for Continuum Soft Robots". Robotics 12, n.º 5 (9 de outubro de 2023): 141. http://dx.doi.org/10.3390/robotics12050141.
Texto completo da fonteVan, Mien. "Higher-order terminal sliding mode controller for fault accommodation of Lipschitz second-order nonlinear systems using fuzzy neural network". Applied Soft Computing 104 (junho de 2021): 107186. http://dx.doi.org/10.1016/j.asoc.2021.107186.
Texto completo da fonteJiao, Yulin, Feng Xiao, Wenjuan Zhang, Shujuan Huang, Hao Lu e Zhaoting Lu. "Image Inpainting based on Gated Convolution and spectral Normalization". Frontiers in Computing and Intelligent Systems 6, n.º 2 (5 de dezembro de 2023): 96–100. http://dx.doi.org/10.54097/wkezn917.
Texto completo da fonteLi, Cuiying, Rui Wu e Ranzhuo Ma. "Existence of solutions for Caputo fractional iterative equations under several boundary value conditions". AIMS Mathematics 8, n.º 1 (2022): 317–39. http://dx.doi.org/10.3934/math.2023015.
Texto completo da fonteTong, Qingbin, Feiyu Lu, Ziwei Feng, Qingzhu Wan, Guoping An, Junci Cao e Tao Guo. "A Novel Method for Fault Diagnosis of Bearings with Small and Imbalanced Data Based on Generative Adversarial Networks". Applied Sciences 12, n.º 14 (21 de julho de 2022): 7346. http://dx.doi.org/10.3390/app12147346.
Texto completo da fontePauli, Patricia, Anne Koch, Julian Berberich, Paul Kohler e Frank Allgower. "Training Robust Neural Networks Using Lipschitz Bounds". IEEE Control Systems Letters 6 (2022): 121–26. http://dx.doi.org/10.1109/lcsys.2021.3050444.
Texto completo da fonteNegrini, Elisa, Giovanna Citti e Luca Capogna. "System identification through Lipschitz regularized deep neural networks". Journal of Computational Physics 444 (novembro de 2021): 110549. http://dx.doi.org/10.1016/j.jcp.2021.110549.
Texto completo da fonteZou, Dongmian, Radu Balan e Maneesh Singh. "On Lipschitz Bounds of General Convolutional Neural Networks". IEEE Transactions on Information Theory 66, n.º 3 (março de 2020): 1738–59. http://dx.doi.org/10.1109/tit.2019.2961812.
Texto completo da fonteLaurel, Jacob, Rem Yang, Gagandeep Singh e Sasa Misailovic. "A dual number abstraction for static analysis of Clarke Jacobians". Proceedings of the ACM on Programming Languages 6, POPL (16 de janeiro de 2022): 1–30. http://dx.doi.org/10.1145/3498718.
Texto completo da fonteGarcía Cabello, Julia. "Mathematical Neural Networks". Axioms 11, n.º 2 (17 de fevereiro de 2022): 80. http://dx.doi.org/10.3390/axioms11020080.
Texto completo da fonteMa, Shuo, e Yanmei Kang. "Exponential synchronization of delayed neutral-type neural networks with Lévy noise under non-Lipschitz condition". Communications in Nonlinear Science and Numerical Simulation 57 (abril de 2018): 372–87. http://dx.doi.org/10.1016/j.cnsns.2017.10.012.
Texto completo da fonteNeumayer, Sebastian, Alexis Goujon, Pakshal Bohra e Michael Unser. "Approximation of Lipschitz Functions Using Deep Spline Neural Networks". SIAM Journal on Mathematics of Data Science 5, n.º 2 (15 de maio de 2023): 306–22. http://dx.doi.org/10.1137/22m1504573.
Texto completo da fonteSong, Xueli, e Jigen Peng. "Global Asymptotic Stability of Impulsive CNNs with Proportional Delays and Partially Lipschitz Activation Functions". Abstract and Applied Analysis 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/832892.
Texto completo da fonteHan, Fangfang, Bin Liu, Junchao Zhu e Baofeng Zhang. "Algorithm Design for Edge Detection of High-Speed Moving Target Image under Noisy Environment". Sensors 19, n.º 2 (16 de janeiro de 2019): 343. http://dx.doi.org/10.3390/s19020343.
Texto completo da fonteBecktor, Jonathan, Frederik Schöller, Evangelos Boukas, Mogens Blanke e Lazaros Nalpantidis. "Lipschitz Constrained Neural Networks for Robust Object Detection at Sea". IOP Conference Series: Materials Science and Engineering 929 (27 de novembro de 2020): 012023. http://dx.doi.org/10.1088/1757-899x/929/1/012023.
Texto completo da fonteAziznejad, Shayan, Harshit Gupta, Joaquim Campos e Michael Unser. "Deep Neural Networks With Trainable Activations and Controlled Lipschitz Constant". IEEE Transactions on Signal Processing 68 (2020): 4688–99. http://dx.doi.org/10.1109/tsp.2020.3014611.
Texto completo da fonteDelaney, Blaise, Nicole Schulte, Gregory Ciezarek, Niklas Nolte, Mike Williams e Johannes Albrecht. "Applications of Lipschitz neural networks to the Run 3 LHCb trigger system". EPJ Web of Conferences 295 (2024): 09005. http://dx.doi.org/10.1051/epjconf/202429509005.
Texto completo da fonteMallat, Stéphane, Sixin Zhang e Gaspar Rochette. "Phase harmonic correlations and convolutional neural networks". Information and Inference: A Journal of the IMA 9, n.º 3 (5 de novembro de 2019): 721–47. http://dx.doi.org/10.1093/imaiai/iaz019.
Texto completo da fonte