Artigos de revistas sobre o tema "Lipidic model membranes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Lipidic model membranes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Le Goff, Thomas, Tung B. T. To e Olivier Pierre-Louis. "Shear dynamics of confined membranes". Soft Matter 17, n.º 22 (2021): 5467–85. http://dx.doi.org/10.1039/d1sm00322d.
Texto completo da fonteSejwal, Kushal, Mohamed Chami, Paul Baumgartner, Julia Kowal, Shirley A. Müller e Henning Stahlberg. "Proteoliposomes – a system to study membrane proteins under buffer gradients by cryo-EM". Nanotechnology Reviews 6, n.º 1 (1 de fevereiro de 2017): 57–74. http://dx.doi.org/10.1515/ntrev-2016-0081.
Texto completo da fonteBrémaud, Erwan, Cyril Favard e Delphine Muriaux. "Deciphering the Assembly of Enveloped Viruses Using Model Lipid Membranes". Membranes 12, n.º 5 (19 de abril de 2022): 441. http://dx.doi.org/10.3390/membranes12050441.
Texto completo da fonteWrobel, Dominika, Dietmar Appelhans, Marco Signorelli, Brigitte Wiesner, Dimitrios Fessas, Ulrich Scheler, Brigitte Voit e Jan Maly. "Interaction study between maltose-modified PPI dendrimers and lipidic model membranes". Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, n.º 7 (julho de 2015): 1490–501. http://dx.doi.org/10.1016/j.bbamem.2015.03.033.
Texto completo da fonteCastelli, Francesco, Sebastiana Caruso e Nicola Uccella. "Biomimesis of Linolenic Acid Transport through Model Lipidic Membranes by Differential Scanning Calorimetry". Journal of Agricultural and Food Chemistry 51, n.º 4 (fevereiro de 2003): 851–55. http://dx.doi.org/10.1021/jf020582z.
Texto completo da fonteGallová, J., K. Želinská e P. Balgavý. "Partial molecular volumes of cholesterol and phosphatidylcholine in mixed bilayers". European Pharmaceutical Journal 64, n.º 2 (27 de novembro de 2017): 1–3. http://dx.doi.org/10.1515/afpuc-2017-0012.
Texto completo da fonteParra, Elisa, Lara H. Moleiro, Ivan López-Montero, Antonio Cruz, Francisco Monroy e Jesús Pérez-Gil. "A combined action of pulmonary surfactant proteins SP-B and SP-C modulates permeability and dynamics of phospholipid membranes". Biochemical Journal 438, n.º 3 (26 de agosto de 2011): 555–64. http://dx.doi.org/10.1042/bj20110681.
Texto completo da fonteTrombetta, Domenico, Francesco Castelli, Maria Grazia Sarpietro, Vincenza Venuti, Mariateresa Cristani, Claudia Daniele, Antonella Saija, Gabriela Mazzanti e Giuseppe Bisignano. "Mechanisms of Antibacterial Action of Three Monoterpenes". Antimicrobial Agents and Chemotherapy 49, n.º 6 (junho de 2005): 2474–78. http://dx.doi.org/10.1128/aac.49.6.2474-2478.2005.
Texto completo da fonteCastanho, M. A. R. B., S. Lopes e M. Fernandes. "Using UV-Vis. Linear Dichroism to Study the Orientation of Molecular Probes and Biomolecules in Lipidic Membranes". Spectroscopy 17, n.º 2-3 (2003): 377–98. http://dx.doi.org/10.1155/2003/801452.
Texto completo da fonteMori, Kenichi, Yosuke Imai, Tsubasa Takaoka, Koji Iwamoto, Hideyoshi Fuji e Tyuji Hoshino. "2P270 Database of Lipid Membrane Structures : Computational Analyses of Model Membranes(40. Membrane structure,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S363. http://dx.doi.org/10.2142/biophys.46.s363_2.
Texto completo da fonteHan, Xu, Chih-Chia Su, Zhemin Zhang, Meinan Lyu, Edward Yu e Marvin T. Nieman. "Elucidating the Structural Dynamics of Integrin α IIbβ 3 from Native Platelet Membranes By Cryo-EM Coupled with Build and Retrieve Data Processing Methodology". Blood 142, Supplement 1 (28 de novembro de 2023): 2559. http://dx.doi.org/10.1182/blood-2023-178888.
Texto completo da fonteSpeziale, Chiara, Livia Salvati Manni, Cristina Manatschal, Ehud M. Landau e Raffaele Mezzenga. "A macroscopic H+and Cl−ions pump via reconstitution of EcClC membrane proteins in lipidic cubic mesophases". Proceedings of the National Academy of Sciences 113, n.º 27 (16 de junho de 2016): 7491–96. http://dx.doi.org/10.1073/pnas.1603965113.
Texto completo da fonteBlakeslee, Joshua J., Eun-Hyang Han, Yun Lin, Jinshan Lin, Seema Nath, Liwen Zhang, Zhenyu Li e Katrina Cornish. "Proteomic and Targeted Lipidomic Analyses of Fluid and Rigid Rubber Particle Membrane Domains in Guayule". Plants 13, n.º 21 (24 de outubro de 2024): 2970. http://dx.doi.org/10.3390/plants13212970.
Texto completo da fonteBasañez, Gorka, Juanita C. Sharpe, Jennifer Galanis, Teresa B. Brandt, J. Marie Hardwick e Joshua Zimmerberg. "Bax-type Apoptotic Proteins Porate Pure Lipid Bilayers through a Mechanism Sensitive to Intrinsic Monolayer Curvature". Journal of Biological Chemistry 277, n.º 51 (14 de outubro de 2002): 49360–65. http://dx.doi.org/10.1074/jbc.m206069200.
Texto completo da fonteSadchenko, A. O. "Correlations between molecular parameters of guest substances and their effect on model lipid membranes". Functional materials 23, n.º 2 (15 de junho de 2016): 230–35. http://dx.doi.org/10.15407/fm23.02.230.
Texto completo da fontePolovinkin, Vitaly, Krishna Khakurel, Michal Babiak, Borislav Angelov, Bohdan Schneider, Jan Dohnalek, Jakob Andreasson e Janos Hajdu. "Demonstration of electron diffraction from membrane protein crystals grown in a lipidic mesophase after lamella preparation by focused ion beam milling at cryogenic temperatures". Journal of Applied Crystallography 53, n.º 6 (13 de outubro de 2020): 1416–24. http://dx.doi.org/10.1107/s1600576720013096.
Texto completo da fonteVashchenko, O. V. "Comparative effects of stearic acid, calcium and magnesium stearates as dopants in model lipid membranes". Functional materials 25, n.º 2 (27 de junho de 2018): 300–307. http://dx.doi.org/10.15407/fm25.02.300.
Texto completo da fonteANGELOV, BORISLAV. "PROTEIN NANODOMAIN PATTERNS IN LIPIDIC BICONTINUOUS CUBIC PHASES". Modern Physics Letters B 16, n.º 07 (20 de março de 2002): 225–30. http://dx.doi.org/10.1142/s0217984902003683.
Texto completo da fonteLee, David B. N., Nora Jamgotchian, Suni G. Allen, Michael B. Abeles e Harry J. Ward. "A lipid-protein hybrid model for tight junction". American Journal of Physiology-Renal Physiology 295, n.º 6 (dezembro de 2008): F1601—F1612. http://dx.doi.org/10.1152/ajprenal.00097.2008.
Texto completo da fonteCort, Aysegul, Tomris Ozben, Anna Sansone, Sebastian Barata-Vallejo, Chryssostomos Chatgilialoglu e Carla Ferreri. "Bleomycin-induced trans lipid formation in cell membranes and in liposome models". Organic & Biomolecular Chemistry 13, n.º 4 (2015): 1100–1105. http://dx.doi.org/10.1039/c4ob01924e.
Texto completo da fonteKehlenbeck, Dominique-Maurice, Inokentijs Josts, Julius Nitsche, Sebastian Busch, V. Trevor Forsyth e Henning Tidow. "Comparison of lipidic carrier systems for integral membrane proteins – MsbA as case study". Biological Chemistry 400, n.º 11 (26 de novembro de 2019): 1509–18. http://dx.doi.org/10.1515/hsz-2019-0171.
Texto completo da fonteEssaid, Donia, Véronique Rosilio, Katia Daghildjian, Audrey Solgadi, Juliette Vergnaud, Athena Kasselouri e Pierre Chaminade. "Artificial plasma membrane models based on lipidomic profiling". Biochimica et Biophysica Acta (BBA) - Biomembranes 1858, n.º 11 (novembro de 2016): 2725–36. http://dx.doi.org/10.1016/j.bbamem.2016.07.010.
Texto completo da fontePušenjak, Rudolf, e Maks Oblak. "Simulacija akcijskega potenciala v Hodgkin-Huxleyevem modelu". Anali PAZU 1, n.º 2 (10 de maio de 2022): 122–27. http://dx.doi.org/10.18690/analipazu.1.2.122-127.2011.
Texto completo da fonteLee, JinKeun, e Barry R. Lentz. "Evolution of Lipidic Structures during Model Membrane Fusion and the Relation of This Process to Cell Membrane Fusion†". Biochemistry 36, n.º 21 (maio de 1997): 6251–59. http://dx.doi.org/10.1021/bi970404c.
Texto completo da fonteRenno, Giacomo, Francesca Cardano, Giorgio Volpi, Claudia Barolo, Guido Viscardi e Andrea Fin. "Imidazo[1,5-a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models". Molecules 27, n.º 12 (16 de junho de 2022): 3856. http://dx.doi.org/10.3390/molecules27123856.
Texto completo da fontede Souza Teixeira, Leonardo, Tatiana Vila Chagas, Antonio Alonso, Isabel Gonzalez-Alvarez, Marival Bermejo, James Polli e Kênnia Rocha Rezende. "Biomimetic Artificial Membrane Permeability Assay over Franz Cell Apparatus Using BCS Model Drugs". Pharmaceutics 12, n.º 10 (19 de outubro de 2020): 988. http://dx.doi.org/10.3390/pharmaceutics12100988.
Texto completo da fonteYaghmur, Anan, Barbara Sartori e Michael Rappolt. "The role of calcium in membrane condensation and spontaneous curvature variations in model lipidic systems". Phys. Chem. Chem. Phys. 13, n.º 8 (2011): 3115–25. http://dx.doi.org/10.1039/c0cp01036g.
Texto completo da fonteNomura, Kaoru, Gilles Ferrat, Terumi Nakajima, Herve Darbon, Takashi Iwashita e Gerardo Corzo. "S1h1-5 Interactions of two kinds of arthropods-derived antimicrobial peptides, pandinins and oxyopinins, with model lipid membranes(S1-h1 "Antimicrobial Peptides and Membrane Interactions",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S113. http://dx.doi.org/10.2142/biophys.46.s113_3.
Texto completo da fonteMorigaki, Kenichi. "S1e2-8 Micropatterned composite membranes of polymerized and fluid lipid bilayers as a versatile model cellular membrane(S1-e2: "New Biomembrane Model Systems, Giant Liposomes and Supported Planar Bilayers, for Probing Biomembrane Structure and Function, and Creation of De Novo Functional Membrane System",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S118. http://dx.doi.org/10.2142/biophys.46.s118_4.
Texto completo da fonteBorshchevskiy, Valentin, Rouslan Efremov, Ekaterina Moiseeva, Georg Büldt e Valentin Gordeliy. "Overcoming merohedral twinning in crystals of bacteriorhodopsin grown in lipidic mesophase". Acta Crystallographica Section D Biological Crystallography 66, n.º 1 (21 de dezembro de 2009): 26–32. http://dx.doi.org/10.1107/s0907444909042838.
Texto completo da fonteZatloukalova, Martina, Ewa Nazaruk e Renata Bilewicz. "Electrogenic transport of Na+/K+-ATPase incorporated in lipidic cubic phases as a model biomimetic membrane". Electrochimica Acta 310 (julho de 2019): 113–21. http://dx.doi.org/10.1016/j.electacta.2019.04.082.
Texto completo da fonteVandoolaeghe, Pauline, Adrian R. Rennie, Richard A. Campbell, Robert K. Thomas, Fredrik Höök, Giovanna Fragneto, Justas Barauskas, Fredrik Tiberg e Tommy Nylander. "The Delivery of Lipidic Compounds to Model Membrane Interfaces by Non-lamellar Liquid Crystalline Nano-particles". Biophysical Journal 96, n.º 3 (fevereiro de 2009): 19a. http://dx.doi.org/10.1016/j.bpj.2008.12.1000.
Texto completo da fonteIto, Koreaki, Naomi Shimokawa-Chiba e Shinobu Chiba. "Sec translocon has an insertase-like function in addition to polypeptide conduction through the channel". F1000Research 8 (20 de dezembro de 2019): 2126. http://dx.doi.org/10.12688/f1000research.21065.1.
Texto completo da fonteVasco, Aldrin V., Martina Brode, Yanira Méndez, Oscar Valdés, Daniel G. Rivera e Ludger A. Wessjohann. "Synthesis of Lactam-Bridged and Lipidated Cyclo-Peptides as Promising Anti-Phytopathogenic Agents". Molecules 25, n.º 4 (13 de fevereiro de 2020): 811. http://dx.doi.org/10.3390/molecules25040811.
Texto completo da fonteSILVA JUNIOR, IZAN M., MARIA CLÍCIA S. CASTRO, DILSON SILVA e CÉLIA M. CORTEZ. "Relevance of Hydrodynamic Effects for the Calculation of Outer Surface Potential of Biological Membrane Using Electrophoretic Data". Anais da Academia Brasileira de Ciências 88, n.º 2 (7 de junho de 2016): 751–63. http://dx.doi.org/10.1590/0001-3765201620140530.
Texto completo da fonteSunami, Takeshi, Kazufumi Hosoda, Hiroaki Suzuki, Tomoaki Matsuura e Tetsuya Yomo. "Cellular Compartment Model for Exploring the Effect of the Lipidic Membrane on the Kinetics of Encapsulated Biochemical Reactions". Langmuir 26, n.º 11 (junho de 2010): 8544–51. http://dx.doi.org/10.1021/la904569m.
Texto completo da fonteTrampari, Sofia, Caroline Neumann, Samuel J. Hjorth-Jensen, Azadeh Shahsavar, Esben M. Quistgaard e Poul Nissen. "Insights into the mechanism of high lipid–detergent crystallization of membrane proteins". Journal of Applied Crystallography 54, n.º 6 (25 de novembro de 2021): 1775–83. http://dx.doi.org/10.1107/s1600576721010669.
Texto completo da fonteBozzer, Sara, Michele Dal Bo, Giuseppe Toffoli, Paolo Macor e Sara Capolla. "Nanoparticles-Based Oligonucleotides Delivery in Cancer: Role of Zebrafish as Animal Model". Pharmaceutics 13, n.º 8 (21 de julho de 2021): 1106. http://dx.doi.org/10.3390/pharmaceutics13081106.
Texto completo da fonteCornell, Bruce A. "S1e2-5 Immunosensors based on Tethered Lipid Membranes(S1-e2: "New Biomembrane Model Systems, Giant Liposomes and Supported Planar Bilayers, for Probing Biomembrane Structure and Function, and Creation of De Novo Functional Membrane System",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S118. http://dx.doi.org/10.2142/biophys.46.s118_1.
Texto completo da fonteRomano, Eugenia, Paolo Antonio Netti e Enza Torino. "A High Throughput Approach Based on Dynamic High Pressure for the Encapsulation of Active Compounds in Exosomes for Precision Medicine". International Journal of Molecular Sciences 22, n.º 18 (13 de setembro de 2021): 9896. http://dx.doi.org/10.3390/ijms22189896.
Texto completo da fonteTaniguchi, Emi, Katsuyuki Nishimura e Akira Naito. "1P346 Conformation and interaction of β-endorphin with a model membrane consisting of unsaturated lipid bilayers as studied by solid-state NMR(12. Membrane dynamics,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S233. http://dx.doi.org/10.2142/biophys.46.s233_2.
Texto completo da fontePan, Dongqing, Ryo Oyama, Tomomi Sato, Takanori Nakane, Ryo Mizunuma, Keita Matsuoka, Yasumasa Joti et al. "Crystal structure of CmABCB1 multi-drug exporter in lipidic mesophase revealed by LCP-SFX". IUCrJ 9, n.º 1 (23 de dezembro de 2021): 134–45. http://dx.doi.org/10.1107/s2052252521011611.
Texto completo da fonteNakane, Takanori, Shinya Hanashima, Mamoru Suzuki, Haruka Saiki, Taichi Hayashi, Keisuke Kakinouchi, Shigeru Sugiyama et al. "Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent". Proceedings of the National Academy of Sciences 113, n.º 46 (31 de outubro de 2016): 13039–44. http://dx.doi.org/10.1073/pnas.1602531113.
Texto completo da fonteTakagishi, Isao, Akira Yamagishi, Hiromitsu Nakazawa, Shingo Sakai, Shintaro Inoue e Satoru Kato. "2P282 Study on the Packing Structure of the Stratum Corneum Lipid Model by Electron Diffraction(40. Membrane structure,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)". Seibutsu Butsuri 46, supplement2 (2006): S366. http://dx.doi.org/10.2142/biophys.46.s366_2.
Texto completo da fonteGarcía-Jaramillo, Manuel, Kelli A. Lytle, Melinda H. Spooner e Donald B. Jump. "A Lipidomic Analysis of Docosahexaenoic Acid (22:6, ω3) Mediated Attenuation of Western Diet Induced Nonalcoholic Steatohepatitis in Male Ldlr -/- Mice". Metabolites 9, n.º 11 (28 de outubro de 2019): 252. http://dx.doi.org/10.3390/metabo9110252.
Texto completo da fonteSánchez-Sánchez, Laura, Roberto Fernández, Maria Dolores Ganfornina, Egoitz Astigarraga e Gabriel Barreda-Gómez. "Protective Actions of α-Tocopherol on Cell Membrane Lipids of Paraquat-Stressed Human Astrocytes Using Microarray Technology, MALDI-MS and Lipidomic Analysis". Antioxidants 11, n.º 12 (10 de dezembro de 2022): 2440. http://dx.doi.org/10.3390/antiox11122440.
Texto completo da fonteLosada-Barreiro, Sonia, Fátima Paiva-Martins e Carlos Bravo-Díaz. "Partitioning of Antioxidants in Edible Oil–Water Binary Systems and in Oil-in-Water Emulsions". Antioxidants 12, n.º 4 (28 de março de 2023): 828. http://dx.doi.org/10.3390/antiox12040828.
Texto completo da fonteSantana-Filho, Arquimedes Paixão, Aramís José Pereira, Letícia Adejani Laibida, Normanda Souza-Melo, Wanderson Duarte DaRocha e Guilherme Lanzi Sassaki. "Lipidomic Analysis Reveals Branched-Chain and Cyclic Fatty Acids from Angomonas deanei Grown under Different Nutritional and Physiological Conditions". Molecules 29, n.º 14 (17 de julho de 2024): 3352. http://dx.doi.org/10.3390/molecules29143352.
Texto completo da fonteGarikapati, Vannuruswamy, Claudia Colasante, Eveline Baumgart-Vogt e Bernhard Spengler. "Sequential lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue specimens from peroxisomal biogenesis factor 11α knockout mice". Analytical and Bioanalytical Chemistry 414, n.º 6 (27 de janeiro de 2022): 2235–50. http://dx.doi.org/10.1007/s00216-021-03860-0.
Texto completo da fonteZheng, Ping, Mengqian Shen, Ruoyu Liu, Xinkai Cai, Jinting Lin, Lulu Wang, Yu Chen, Guangwei Chen, Shijiang Cao e Yuan Qin. "Revealing Further Insights into Astringent Seeds of Chinese Fir by Integrated Metabolomic and Lipidomic Analyses". International Journal of Molecular Sciences 24, n.º 20 (12 de outubro de 2023): 15103. http://dx.doi.org/10.3390/ijms242015103.
Texto completo da fonte