Literatura científica selecionada sobre o tema "Linear programming"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Linear programming".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Linear programming"
S. Mohan, S. Mohan, e Dr S. Sekar Dr. S. Sekar. "Linear Programming Problem with Homogeneous Constraints". Indian Journal of Applied Research 4, n.º 3 (1 de outubro de 2011): 298–307. http://dx.doi.org/10.15373/2249555x/mar2014/90.
Texto completo da fonteD, Sempavazhaam, Jothi K e Kamali S. Nandhini A. Princy Rebekah J. "A Study on Linear Programming Problem". International Journal of Trend in Scientific Research and Development Volume-3, Issue-2 (28 de fevereiro de 2019): 903–4. http://dx.doi.org/10.31142/ijtsrd21539.
Texto completo da fonteMahjoub Mohammed Hussein, Elfarazdag. "Application of Linear Programming (Transportation Problem)". International Journal of Science and Research (IJSR) 12, n.º 3 (5 de março de 2023): 452–54. http://dx.doi.org/10.21275/sr21222020051.
Texto completo da fonteAsquith, J., e Vasek Chvatal. "Linear Programming". Mathematical Gazette 69, n.º 448 (junho de 1985): 151. http://dx.doi.org/10.2307/3616957.
Texto completo da fonteCaoimh, C. C. O., e Howard Karloff. "Linear Programming". Mathematical Gazette 79, n.º 484 (março de 1995): 245. http://dx.doi.org/10.2307/3620128.
Texto completo da fonteDantzig, George B. "Linear Programming". Operations Research 50, n.º 1 (fevereiro de 2002): 42–47. http://dx.doi.org/10.1287/opre.50.1.42.17798.
Texto completo da fonteŘímánek, Josef. "Linear programming". European Journal of Operational Research 21, n.º 2 (agosto de 1985): 277–78. http://dx.doi.org/10.1016/0377-2217(85)90046-3.
Texto completo da fonteQi, Zhiquan, Yingjie Tian e Yong Shi. "Regularized Multiple Criteria Linear Programming via Linear Programming". Procedia Computer Science 9 (2012): 1234–39. http://dx.doi.org/10.1016/j.procs.2012.04.134.
Texto completo da fonteDangerfield, Janet, e B. D. Bunday. "Basic Linear Programming". Mathematical Gazette 69, n.º 450 (dezembro de 1985): 317. http://dx.doi.org/10.2307/3617607.
Texto completo da fonteMegiddo, N. "Linear Programming (1986)". Annual Review of Computer Science 2, n.º 1 (junho de 1987): 119–45. http://dx.doi.org/10.1146/annurev.cs.02.060187.001003.
Texto completo da fonteTeses / dissertações sobre o assunto "Linear programming"
Andreotti, Sandro [Verfasser]. "Linear Programming and Integer Linear Programming in Bioinformatics / Sandro Andreotti". Berlin : Freie Universität Berlin, 2015. http://d-nb.info/1066645213/34.
Texto completo da fonteSarrabezolles, Pauline. "Colourful linear programming". Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1033/document.
Texto completo da fonteThe colorful Carathéodory theorem, proved by Bárány in 1982, states the following. Given d Å1 sets of points S1, . . . ,SdÅ1 µ Rd , each of them containing 0 in its convex hull, there exists a colorful set T containing 0 in its convex hull, i.e. a set T µ SdÅ1 iÆ1 Si such that jT \Si j • 1 for all i and such that 0 2 conv(T ). This result gave birth to several questions, some algorithmic and some more combinatorial. This thesis provides answers on both aspects. The algorithmic questions raised by the colorful Carathéodory theorem concern, among other things, the complexity of finding a colorful set under the condition of the theorem, and more generally of deciding whether there exists such a colorful set when the condition is not satisfied. In 1997, Bárány and Onn defined colorful linear programming as algorithmic questions related to the colorful Carathéodory theorem. The two questions we just mentioned come under colorful linear programming. This thesis aims at determining which are the polynomial cases of colorful linear programming and which are the harder ones. New complexity results are obtained, refining the sets of undetermined cases. In particular, we discuss some combinatorial versions of the colorful Carathéodory theorem from an algorithmic point of view. Furthermore, we show that computing a Nash equilibrium in a bimatrix game is polynomially reducible to a colorful linear programming problem. On our track, we found a new way to prove that a complementarity problem belongs to the PPAD class with the help of Sperner’s lemma. Finally, we present a variant of the “Bárány-Onn” algorithm, which is an algorithmcomputing a colorful set T containing 0 in its convex hull whose existence is ensured by the colorful Carathéodory theorem. Our algorithm makes a clear connection with the simplex algorithm. After a slight modification, it also coincides with the Lemke method, which computes a Nash equilibriumin a bimatrix game. The combinatorial question raised by the colorful Carathéodory theorem concerns the number of positively dependent colorful sets. Deza, Huang, Stephen, and Terlaky (Colourful simplicial depth, Discrete Comput. Geom., 35, 597–604 (2006)) conjectured that, when jSi j Æ d Å1 for all i 2 {1, . . . ,d Å1}, there are always at least d2Å1 colourful sets containing 0 in their convex hulls. We prove this conjecture with the help of combinatorial objects, known as the octahedral systems. Moreover, we provide a thorough study of these objects
Espinoza, Daniel G. "On Linear Programming, Integer Programming and Cutting Planes". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10482.
Texto completo da fonteWei, Hua. "Numerical Stability in Linear Programming and Semidefinite Programming". Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2922.
Texto completo da fonteWe start with the error bound analysis of the search directions for the normal equation approach for LP. Our error analysis explains the surprising fact that the ill-conditioning is not a significant problem for the normal equation system. We also explain why most of the popular LP solvers have a default stop tolerance of only 10-8 when the machine precision on a 32-bit computer is approximately 10-16.
We then propose a simple alternative approach for the normal equation based interior-point method. This approach has better numerical stability than the normal equation based method. Although, our approach is not competitive in terms of CPU time for the NETLIB problem set, we do obtain higher accuracy. In addition, we obtain significantly smaller CPU times compared to the normal equation based direct solver, when we solve well-conditioned, huge, and sparse problems by using our iterative based linear solver. Additional techniques discussed are: crossover; purification step; and no backtracking.
Finally, we present an algorithm to construct SDP problem instances with prescribed strict complementarity gaps. We then introduce two measures of strict complementarity gaps. We empirically show that: (i) these measures can be evaluated accurately; (ii) the size of the strict complementarity gaps correlate well with the number of iteration for the SDPT3 solver, as well as with the local asymptotic convergence rate; and (iii) large strict complementarity gaps, coupled with the failure of Slater's condition, correlate well with loss of accuracy in the solutions. In addition, the numerical tests show that there is no correlation between the strict complementarity gaps and the geometrical measure used in [31], or with Renegar's condition number.
Wolf, Jan [Verfasser]. "Quantified Linear Programming / Jan Wolf". Aachen : Shaker, 2015. http://d-nb.info/1074087275/34.
Texto completo da fonteSjöström, Henrik. "Pivoting methods for linear programming". Thesis, KTH, Matematik (Inst.), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98977.
Texto completo da fontePrice, C. J. "Non-linear semi-infinite programming". Thesis, University of Canterbury. Mathematics and Statistics, 1992. http://hdl.handle.net/10092/7920.
Texto completo da fonteWu, S. Y. "Linear programming on measure spaces". Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372925.
Texto completo da fonteDIAS, DOUGLAS MOTA. "QUANTUM-INSPIRED LINEAR GENETIC PROGRAMMING". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=17544@1.
Texto completo da fonteA superioridade de desempenho dos algoritmos quânticos, em alguns problemas específicos, reside no uso direto de fenômenos da mecânica quântica para realizar operações com dados em computadores quânticos. Esta característica fez surgir uma nova abordagem, denominada Computação com Inspiração Quântica, cujo objetivo é criar algoritmos clássicos (executados em computadores clássicos) que tirem proveito de princípios da mecânica quântica para melhorar seu desempenho. Neste sentido, alguns algoritmos evolutivos com inspiração quântica tem sido propostos e aplicados com sucesso em problemas de otimização combinatória e numérica, apresentando desempenho superior àquele dos algoritmos evolutivos convencionais, quanto à melhoria da qualidade das soluções e à redução do número de avaliações necessárias para alcançá-las. Até o presente momento, no entanto, este novo paradigma de inspiração quântica ainda não havia sido aplicado à Programação Genética (PG), uma classe de algoritmos evolutivos que visa à síntese automática de programas de computador. Esta tese propõe, desenvolve e testa um novo modelo de algoritmo evolutivo com inspiração quântica, denominado Programação Genética Linear com Inspiração Quântica (PGLIQ), para a evolução de programas em código de máquina. A Programação Genética Linear é assim denominada porque cada um dos seus indivíduos é representado por uma lista de instruções (estruturas lineares), as quais são executadas sequencialmente. As contribuições deste trabalho são o estudo e a formulação inédita do uso do paradigma da inspiração quântica na síntese evolutiva de programas de computador. Uma das motivações para a opção pela evolução de programas em código de máquina é que esta é a abordagem de PG que, por oferecer a maior velocidade de execução, viabiliza experimentos em larga escala. O modelo proposto é inspirado em sistemas quânticos multiníveis e utiliza o qudit como unidade básica de informação quântica, o qual representa a superposição dos estados de um sistema deste tipo. O funcionamento do modelo se baseia em indivíduos quânticos, que representam a superposição de todos os programas do espaço de busca, cuja observação gera indivíduos clássicos e os programas (soluções). Nos testes são utilizados problemas de regressão simbólica e de classificação binária para se avaliar o desempenho da PGLIQ e compará-lo com o do modelo AIMGP (Automatic Induction of Machine Code by Genetic Programming), considerado atualmente o modelo de PG mais eficiente na evolução de código de máquina, conforme citado em inúmeras referências bibliográficas na área. Os resultados mostram que a Programação Genética Linear com Inspiração Quântica (PGLIQ) apresenta desempenho geral superior nestas classes de problemas, ao encontrar melhores soluções (menores erros) a partir de um número menor de avaliações, com a vantagem adicional de utilizar um número menor de parâmetros e operadores que o modelo de referência. Nos testes comparativos, o modelo mostra desempenho médio superior ao do modelo de referência para todos os estudos de caso, obtendo erros de 3 a 31% menores nos problemas de regressão simbólica, e de 36 a 39% nos problemas de classificação binária. Esta pesquisa conclui que o paradigma da inspiração quântica pode ser uma abordagem competitiva para se evoluir programas eficientemente, encorajando o aprimoramento e a extensão do modelo aqui apresentado, assim como a criação de outros modelos de programação genética com inspiração quântica.
The superior performance of quantum algorithms in some specific problems lies in the direct use of quantum mechanics phenomena to perform operations with data on quantum computers. This feature has originated a new approach, named Quantum-Inspired Computing, whose goal is to create classic algorithms (running on classical computers) that take advantage of quantum mechanics principles to improve their performance. In this sense, some quantum-inspired evolutionary algorithms have been proposed and successfully applied in combinatorial and numerical optimization problems, presenting a superior performance to that of conventional evolutionary algorithms, by improving the quality of solutions and reducing the number of evaluations needed to achieve them. To date, however, this new paradigm of quantum inspiration had not yet been applied to Genetic Programming (GP), a class of evolutionary algorithms that aims the automatic synthesis of computer programs. This thesis proposes, develops and tests a novel model of quantum-inspired evolutionary algorithm named Quantum-Inspired Linear Genetic Programming (QILGP) for the evolution of machine code programs. Linear Genetic Programming is so named because each of its individuals is represented by a list of instructions (linear structures), which are sequentially executed. The contributions of this work are the study and formulation of the novel use of quantum inspiration paradigm on evolutionary synthesis of computer programs. One of the motivations for choosing by the evolution of machine code programs is because this is the GP approach that, by offering the highest speed of execution, makes feasible large-scale experiments. The proposed model is inspired on multi-level quantum systems and uses the qudit as the basic unit of quantum information, which represents the superposition of states of such a system. The model’s operation is based on quantum individuals, which represent a superposition of all programs of the search space, whose observation leads to classical individuals and programs (solutions). The tests use symbolic regression and binary classification problems to evaluate the performance of QILGP and compare it with the AIMGP model (Automatic Induction of Machine Code by Genetic Programming), which is currently considered the most efficient GP model to evolve machine code, as cited in numerous references in this field. The results show that Quantum-Inspired Linear Genetic Programming (QILGP) presents superior overall performance in these classes of problems, by achieving better solutions (smallest error) from a smaller number of evaluations, with the additional advantage of using a smaller number of parameters and operators that the reference model. In comparative tests, the model shows average performance higher than that of the reference model for all case studies, achieving errors 3-31% lower in the problems of symbolic regression, and 36-39% in the binary classification problems. This research concludes that the quantum inspiration paradigm can be a competitive approach to efficiently evolve programs, encouraging the improvement and extension of the model presented here, as well as the creation of other models of quantum-inspired genetic programming.
Ramadan, Khaled Carleton University Dissertation Mathematics and Statistics. "Linear programming with interval coefficients". Ottawa, 1996.
Encontre o texto completo da fonteLivros sobre o assunto "Linear programming"
Darst, Richard B. Introduction to linear programming: Applications and extensions. New York: M. Dekker, 1991.
Encontre o texto completo da fonteKarloff, Howard. Linear Programming. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-0-8176-4844-2.
Texto completo da fonteSaigal, Romesh. Linear Programming. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2311-6.
Texto completo da fonteVanderbei, Robert J. Linear Programming. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39415-8.
Texto completo da fonteVanderbei, Robert J. Linear Programming. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4614-7630-6.
Texto completo da fonteVanderbei, Robert J. Linear Programming. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5662-3.
Texto completo da fonteVanderbei, Robert J. Linear Programming. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74388-2.
Texto completo da fonteIgnizio, James P. Linear programming. Englewood Cliffs, N.J: Prentice Hall, 1994.
Encontre o texto completo da fonteWisniewski, Mik. Linear programming. Basingstoke: Palgrave, 2001.
Encontre o texto completo da fonteFeiring, Bruce. Linear Programming. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 1986. http://dx.doi.org/10.4135/9781412984751.
Texto completo da fonteCapítulos de livros sobre o assunto "Linear programming"
Luc, Dinh The. "Linear Programming". In Multiobjective Linear Programming, 49–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21091-9_3.
Texto completo da fonteBhatti, M. Asghar. "Linear Programming". In Practical Optimization Methods, 315–436. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0501-2_6.
Texto completo da fonteBlum, Lenore, Felipe Cucker, Michael Shub e Steve Smale. "Linear Programming". In Complexity and Real Computation, 275–96. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0701-6_15.
Texto completo da fontePoler, Raúl, Josefa Mula e Manuel Díaz-Madroñero. "Linear Programming". In Operations Research Problems, 1–48. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5577-5_1.
Texto completo da fonteHolden, K., e A. W. Pearson. "Linear Programming". In Introductory Mathematics for Economics and Business, 297–318. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_8.
Texto completo da fonteČepin, Marko. "Linear Programming". In Assessment of Power System Reliability, 249–52. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-688-7_16.
Texto completo da fonteShimizu, Kiyotaka, Yo Ishizuka e Jonathan F. Bard. "Linear Programming". In Nondifferentiable and Two-Level Mathematical Programming, 128–87. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6305-1_5.
Texto completo da fonteDiwekar, Urmila. "Linear Programming". In Introduction to Applied Optimization, 1–29. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-76635-5_2.
Texto completo da fonteFlorenzano, Monique, e Cuong Le Van. "Linear Programming". In Studies in Economic Theory, 51–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56522-9_4.
Texto completo da fonteWoodford, C., e C. Phillips. "Linear Programming". In Numerical Methods with Worked Examples: Matlab Edition, 135–67. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1366-6_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Linear programming"
Flanagan, Mark F. "Linear-programming receivers". In 2008 46th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008. http://dx.doi.org/10.1109/allerton.2008.4797568.
Texto completo da fonteXu, Zhiming, Yu Bai e Shuning Wang. "Sequential Global Linear Programming Algorithm for Continuous Piecewise Linear Programming*". In 2018 13th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2018. http://dx.doi.org/10.1109/wcica.2018.8630336.
Texto completo da fontePaolini, Luca, e Mauro Piccolo. "Semantically linear programming languages". In the 10th international ACM SIGPLAN symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1389449.1389462.
Texto completo da fonteVaidya, Jaideep. "Privacy-preserving linear programming". In the 2009 ACM symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1529282.1529729.
Texto completo da fonteTaghavi, Mohammad, e Paul Siegel. "Adaptive Linear Programming Decoding". In 2006 IEEE International Symposium on Information Theory. IEEE, 2006. http://dx.doi.org/10.1109/isit.2006.262071.
Texto completo da fonteRamos, Edgar A. "Linear programming queries revisited". In the sixteenth annual symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/336154.336198.
Texto completo da fonteYang, Jihui. "Fuzzy relation linear programming". In 2009 IEEE International Conference on Granular Computing (GRC). IEEE, 2009. http://dx.doi.org/10.1109/grc.2009.5255037.
Texto completo da fonteGhosh, Arka, Piotr Hofman e Sławomir Lasota. "Orbit-finite linear programming". In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2023. http://dx.doi.org/10.1109/lics56636.2023.10175799.
Texto completo da fontePapadimitriou, Christos H., e Mihalis Yannakakis. "Linear programming without the matrix". In the twenty-fifth annual ACM symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/167088.167127.
Texto completo da fonteSyed, Umar, Michael Bowling e Robert E. Schapire. "Apprenticeship learning using linear programming". In the 25th international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390156.1390286.
Texto completo da fonteRelatórios de organizações sobre o assunto "Linear programming"
Bixby, Robert E. Linear Programming Tools for Integer Programming. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1989. http://dx.doi.org/10.21236/ada219013.
Texto completo da fonteBixby, Robert. Linear-Programming Tools in Integer Programming: The Traveling Salesman. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1992. http://dx.doi.org/10.21236/ada261398.
Texto completo da fonteKlotz, Edward S. Dynamic Pricing Criteria in Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, julho de 1988. http://dx.doi.org/10.21236/ada198945.
Texto completo da fonteQuinn, J. J., R. L. Johnson e L. A. Durham. Optimized groundwater containment using linear programming. Office of Scientific and Technical Information (OSTI), julho de 1998. http://dx.doi.org/10.2172/656456.
Texto completo da fonteGill, Philip E., Walter Murray, Dulce B. Ponceleon e Michael A. Saunders. Primal-Dual Methods for Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, maio de 1991. http://dx.doi.org/10.21236/ada237418.
Texto completo da fonteEbeida, Mohamed, Ahmed Abdelkader, Nina Amenta, Drew Kouri, Ojas Parekh, Cynthia Phillips e Nickolas Winovich. Novel Geometric Operations for Linear Programming. Office of Scientific and Technical Information (OSTI), novembro de 2020. http://dx.doi.org/10.2172/1813669.
Texto completo da fonteGearhart, Jared Lee, Kristin Lynn Adair, Justin David Durfee, Katherine A. Jones, Nathaniel Martin e Richard Joseph Detry. Comparison of open-source linear programming solvers. Office of Scientific and Technical Information (OSTI), outubro de 2013. http://dx.doi.org/10.2172/1104761.
Texto completo da fonteMurray, W., e M. A. Saunders. New approaches to linear and nonlinear programming. Office of Scientific and Technical Information (OSTI), março de 1990. http://dx.doi.org/10.2172/5254075.
Texto completo da fonteTodd, Michael J., e Yinyu Ye. A Centered Projective Algorithm for Linear Programming. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1988. http://dx.doi.org/10.21236/ada192100.
Texto completo da fonteDomich, Paul D., Paul T. Boggs, Janet R. Donaldson e Christoph Witzgall. Optimal 3-dimensional methods for linear programming. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-4225.
Texto completo da fonte