Artigos de revistas sobre o tema "Linear induction accelerators"

Siga este link para ver outros tipos de publicações sobre o tema: Linear induction accelerators.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Linear induction accelerators".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Bayless, John R., Craig P. Burkhart e Richard J. Adler. "Linear induction accelerators for industrial applications". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 (abril de 1989): 1142–45. http://dx.doi.org/10.1016/0168-583x(89)90558-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wang, Shao-Heng, e Jian-Jun Deng. "Acceleration modules in linear induction accelerators". Chinese Physics C 38, n.º 5 (maio de 2014): 057005. http://dx.doi.org/10.1088/1674-1137/38/5/057005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bayless, John R., e Richard J. Adler. "Linear induction accelerators for radiation processing". International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 31, n.º 1-3 (janeiro de 1988): 327–31. http://dx.doi.org/10.1016/1359-0197(88)90146-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Matsuzawa, Hidenori, Haruhisa Wada, Satoshi Mori e Tadashi Yamamoto. "Induction Linear Accelerators with High-TcBulk Superconductor Lenses". Japanese Journal of Applied Physics 30, Part 1, No. 11A (15 de novembro de 1991): 2972–73. http://dx.doi.org/10.1143/jjap.30.2972.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Humphries, Stanley. "Quadrupole field geometries for intense electron beam acceleration". Laser and Particle Beams 14, n.º 3 (setembro de 1996): 519–28. http://dx.doi.org/10.1017/s0263034600010193.

Texto completo da fonte
Resumo:
High-intensity electron beams could be focused in low-frequency RF accelerators and induction linear accelerators by adding transverse components to the accelerating electric field. Calculations with a 3D code show that quasielectrostatic focusing is sufficient to transport kiloampere electron beams in RF accelerators and the high-energy sections of induction accelerators. The elimination of conventional magnetic focusing systems could lead to reductions in the volume and weight of high-current electron accelerators. Two novel quadrupole geometries are investigated: a periodic array of spherical electrodes with alternating displacements and a set of plate electrodes with elliptical apertures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Herrmannsfeldt, W. B., e Denis Keefe. "Induction linac drivers for heavy ion fusion". Laser and Particle Beams 8, n.º 1-2 (janeiro de 1990): 81–88. http://dx.doi.org/10.1017/s0263034600007849.

Texto completo da fonte
Resumo:
The Heavy Ion Fusion Accelerator Research (HIFAR) program of the U.S. Dept. of Energy has for several years concentrated on developing linear induction accelerators as Inertial Fusion (IF) drivers. This accelerator technology is suitable for the IF application because it is readily capable of accelerating short, intense pulses of charged particles with good electrical efficiency. The principal technical difficulty is in injecting and transporting the intense pulses while maintaining the necessary beam quality. The approach used has been to design a system of multiple beams so that not all of the charge has to be confined in a single beam line. The beams are finally brought together in a common focus at the target. This paper will briefly present the status and future plans of the program, and will also briefly review systems study results for HIF.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Ekdahl, Carl. "The Resistive-Wall Instability in Multipulse Linear Induction Accelerators". IEEE Transactions on Plasma Science 45, n.º 5 (maio de 2017): 811–18. http://dx.doi.org/10.1109/tps.2017.2681040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Orzechowski, T., E. Scharlemann, B. Anderson, V. Neil, W. Fawley, D. Prosnitz, S. Yarema et al. "High-gain free electron lasers using induction linear accelerators". IEEE Journal of Quantum Electronics 21, n.º 7 (julho de 1985): 831–44. http://dx.doi.org/10.1109/jqe.1985.1072732.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Humphries, Stanley. "Simulations of longitudinal instabilities in ion induction linear accelerators". Laser and Particle Beams 10, n.º 3 (setembro de 1992): 511–29. http://dx.doi.org/10.1017/s0263034600006765.

Texto completo da fonte
Resumo:
This article describes computer simulations of a longitudinal instability that affects induction linear accelerators for high-power ion beams. The instability is driven by axial bunching of ions when they interact with acceleration gaps connected to input transmission lines. The process is similar to the longitudinal resistive wall instability in continuous systems. Although bunching instabilities do not appear in existing induction linear accelerators for electrons, they may be important for proposed ion accelerators for heavy ion fusion. The simulation code is a particle-in-cell model that describes a drifting beam crossing discrete acceleration gaps with a self-consistent calculation of axial space charge forces. In present studies with periodic boundaries, the model predicts values for quantities such as the stabilizing axial velocity spread that are in good agreement with analytic theories. The simulations describe the nonlinear growth of the instability and its saturation with increased axial emittance. They show that an initially cold beam is subject to a severe disruption that drives the emittance well above the stabilized saturation levels. The simulation results confirm that axial space charge forces do not reduce axial beam bunching. In fact, space charge effects increase the axial velocity spread required for stability. With simple resistive driving circuits, the model predicts velocity spreads that are too high for heavy ion fusion applications. Several processes currently under study may mitigate this result, including advanced pulsed power switching methods, enhanced gap capacitance, and an energy spread impressed between individual beams of a multibeam transport system.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lagunas-Solar, Manuel C. "Induction-linear accelerators for food processing with ionizing radiation". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 10-11 (maio de 1985): 987–93. http://dx.doi.org/10.1016/0168-583x(85)90155-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh e A. S. Sergeev. "High-Power Free-Electron Masers Based on Linear Induction Accelerators". Radiophysics and Quantum Electronics 63, n.º 12 (maio de 2021): 931–75. http://dx.doi.org/10.1007/s11141-021-10105-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh e A. S. Sergeev. "High-Power Free-Electron Masers Based on Linear Induction Accelerators". Izvestiya vysshikh uchebnykh zavedenii. Radiofizika 63, n.º 12 (2020): 1032–81. http://dx.doi.org/10.52452/00213462_2020_63_12_1032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Zhang, H., K. Zhang, Y. Shen, X. Jiang, P. Dong, Y. Liu, Y. Wang et al. "Note: A pulsed laser ion source for linear induction accelerators". Review of Scientific Instruments 86, n.º 1 (janeiro de 2015): 016104. http://dx.doi.org/10.1063/1.4905363.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Peach, Ken, e Carl Ekdahl. "Particle Beam Radiography". Reviews of Accelerator Science and Technology 06 (janeiro de 2013): 117–42. http://dx.doi.org/10.1142/s1793626813300065.

Texto completo da fonte
Resumo:
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Ekdahl, Carl, e Rodney McCrady. "Suppression of Beam Breakup in Linear Induction Accelerators by Stagger Tuning". IEEE Transactions on Plasma Science 48, n.º 10 (outubro de 2020): 3589–99. http://dx.doi.org/10.1109/tps.2020.3019999.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Hovingh, Jack, Victor O. Brady, Andris Faltens, Denis Keefe e Edward P. Lee. "Heavy-Ion Linear Induction Accelerators as Drivers for Inertial Fusion Power Plants". Fusion Technology 13, n.º 2 (fevereiro de 1988): 255–78. http://dx.doi.org/10.13182/fst88-a25104.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Rosenthal, S. E. "Characterization of electron flow in negative- and positive-polarity linear-induction accelerators". IEEE Transactions on Plasma Science 19, n.º 5 (1991): 822–30. http://dx.doi.org/10.1109/27.108419.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hotta, Eiki, e Izumi Hayashi. "Bidirectional pulser for linear induction accelerators made from line cavities with external pulse injection." Kakuyūgō kenkyū 56, n.º 1 (1986): 52–58. http://dx.doi.org/10.1585/jspf1958.56.52.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Burris-Mog, T. J., M. A. Chavez, M. A. Espy, M. J. Manard, D. C. Moir, J. B. Schillig, R. Trainham e P. L. Volegov. "Calibration of two compact permanent magnet spectrometers for high current electron linear induction accelerators". Review of Scientific Instruments 89, n.º 7 (julho de 2018): 073303. http://dx.doi.org/10.1063/1.5029837.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Miller, R. B., B. M. Marder, P. D. Coleman e R. E. Clark. "The effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators". Journal of Applied Physics 63, n.º 4 (15 de fevereiro de 1988): 997–1008. http://dx.doi.org/10.1063/1.341136.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Bolyukh, V. F., e I. S. Shchukin. "Influence of limiting the duration of the armature winding current on the operating indicators of a linear pulse electromechanical induction type converter". Electrical Engineering & Electromechanics, n.º 6 (3 de dezembro de 2021): 3–10. http://dx.doi.org/10.20998/2074-272x.2021.6.01.

Texto completo da fonte
Resumo:
Introduction. Linear pulse electromechanical converters of induction type (LPECIT) are used in many branches of science and technology as shock-power devices and electromechanical accelerators. In them, due to the phase shift between the excitation current in the inductor winding and the induced current in the armature winding, in addition to the initial electrodynamic forces (EDF) of repulsion, subsequent EDF of attraction also arise. As a result, the operating indicators of LPECIT are reduced. The purpose of the article is to increase the performance of linear pulse electromechanical induction-type converters when operating as a shock-power device and an electromechanical accelerator by limiting the duration of the induced current in the armature winding until its polarity changes. Methodology. To analyze the electromechanical characteristics and indicators of LPECIT, a mathematical model was used, in which the solutions of equations describing interrelated electrical, magnetic, mechanical and thermal processes are presented in a recurrent form. Results. To eliminate the EDF of attraction between the LPIECIT windings, it is proposed to limit the duration of the induced current in the armature winding before changing its polarity by connecting a rectifier diode to it. It was found that when the converter operates as a shock-power device without limiting the armature winding current, the value of the EDF pulse after reaching the maximum value decreases by the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion, taking into account the EDF pulse, recoil force, current and heating temperature of the inductor winding, increases. When the converter operates as an electromechanical accelerator without limiting the armature winding current, the speed and efficiency decrease, taking into account the kinetic energy and voltage of the capacitive energy storage at the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion increases, the temperature rise of the armature winding decreases, the value of the maximum efficiency increases, reaching 16.16 %. Originality. It has been established that due to the limitation of the duration of the armature winding current, the power indicators of the LPECIT increase when operating as a shock-power device and the speed indicators when the LPECIT operates as an electromechanical accelerator. Practical value. It was found that with the help of a rectifier diode connected to the multi-turn winding of the armature, unipolarity of the current is ensured, which leads to the elimination of the EDF of attraction and an increase in the performance of the LPECIT.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Annenkov, Vladimir, Evgeny Berendeev, Evgeniia Volchok e Igor Timofeev. "Particle-in-Cell Simulations of High-Power THz Generator Based on the Collision of Strongly Focused Relativistic Electron Beams in Plasma". Photonics 8, n.º 6 (21 de maio de 2021): 172. http://dx.doi.org/10.3390/photonics8060172.

Texto completo da fonte
Resumo:
Based on particle-in-cell simulations, we propose to generate sub-nanosecond pulses of narrowband terahertz radiation with tens of MW power using unique properties of kiloampere relativistic (2 MeV) electron beams produced by linear induction accelerators. Due to small emittance of such beams, they can be focused into millimeter and sub-millimeter spots comparable in sizes with the wavelength of THz radiation. If such a beam is injected into a plasma, it becomes unstable against the two-stream instability and excites plasma oscillations that can be converted to electromagnetic waves at the plasma frequency and its harmonics. It is shown that several radiation mechanisms with high efficiency of power conversion (∼1%) come into play when the radial size of the beam–plasma system becomes comparable with the wavelength of the emitted waves.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Korsbäck, Anders, Flyura Djurabekova e Walter Wuensch. "Statistics of vacuum electrical breakdown clustering and the induction of follow-up breakdowns". AIP Advances 12, n.º 11 (1 de novembro de 2022): 115317. http://dx.doi.org/10.1063/5.0111677.

Texto completo da fonte
Resumo:
Understanding the underlying physics of vacuum electrical breakdown is of relevance for the development of technologies where breakdown is of significance, either as an intended part of device operation or as a cause of failure. One prominent contemporary case of the latter is high-gradient linear accelerators, where structures must be able to operate with both high surface electric fields and low breakdown rates. Temporal clustering of breakdowns has for long been observed in accelerating structures. In this work, the statistics of breakdown clustering were studied using data collected by a system applying DC voltage pulses over parallel disk electrodes in a vacuum chamber. It was found that the obtained distributions of cluster sizes can be explained by postulating that every breakdown induces a number of follow-up breakdowns that are Poisson-distributed with λ < 1. It was also found that the primary breakdown rate, i.e., the breakdown rate after discounting follow-up breakdowns, fluctuates over time but has no discernible correlation with cluster size. Considered together, these results provide empirical support for the interpretation that primary and follow-up breakdowns are categorically different kinds of events with different underlying causes and mechanisms. Furthermore, they support the interpretation that there is an actual causal relationship between the breakdowns in a cluster rather than them simply being concurrent events with a common underlying cause.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Peskov, N. Yu, N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, V. Yu Zaslavsky, A. K. Kaminsky, S. N. Sedykh et al. "Development of powerful long-pulse Bragg FELs operating from sub-THz to THz bands based on linear induction accelerators: recent results and projects". EPJ Web of Conferences 195 (2018): 01010. http://dx.doi.org/10.1051/epjconf/201819501010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Logachev, P. V., G. I. Kuznetsov, A. A. Korepanov, A. V. Akimov, S. V. Shiyankov, O. A. Pavlov, D. A. Starostenko e G. A. Fat’kin. "LIU-2 linear induction accelerator". Instruments and Experimental Techniques 56, n.º 6 (novembro de 2013): 672–79. http://dx.doi.org/10.1134/s0020441213060195.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Bresie, D. A., J. A. Andrews e S. W. Ingram. "Parametric approach to linear induction accelerator design". IEEE Transactions on Magnetics 27, n.º 1 (janeiro de 1991): 390–93. http://dx.doi.org/10.1109/20.101063.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Sandalov, Evgeny S., Stanislav L. Sinitsky, Alexander V. Burdakov, Petr A. Bak, Kirill I. Zhivankov, Ermek K. Kenzhebulatov, Pavel V. Logachev, Dmitrii I. Skovorodin, Alexander R. Akhmetov e Oleg A. Nikitin. "Electrodynamic System of the Linear Induction Accelerator Module". IEEE Transactions on Plasma Science 49, n.º 2 (fevereiro de 2021): 718–28. http://dx.doi.org/10.1109/tps.2020.3045345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Starostenko, D., A. Akimov, P. Bak, D. Bolkhovityanov, Ya Kulenko, P. Logachev, D. Nikiforov et al. "Beam Dynamics of Linear Induction Accelerator LIA-2". Physics of Particles and Nuclei Letters 19, n.º 4 (26 de julho de 2022): 393–96. http://dx.doi.org/10.1134/s1547477122040197.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Huang Ziping, 黄子平, 蒋薇 Jiang Wei e 叶毅 Ye Yi. "Reset system for multi-pulse linear induction accelerator". High Power Laser and Particle Beams 26, n.º 4 (2014): 45101. http://dx.doi.org/10.3788/hplpb20142604.45101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Zhang Huang, 张篁, 陈德彪 Chen Debiao, 江孝国 Jiang Xiaoguo, 夏连胜 Xia Liansheng, 刘星光 Liu Xingguang, 谌怡 Chen Yi e 章林文 Zhang Linwen. "Experimental research on photocathode for linear induction accelerator". High Power Laser and Particle Beams 22, n.º 3 (2010): 583–86. http://dx.doi.org/10.3788/hplpb20102203.0583.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei e 刘大刚 Liu Dagang. "Simulation of transport process for linear induction accelerator". High Power Laser and Particle Beams 22, n.º 4 (2010): 913–17. http://dx.doi.org/10.3788/hplpb20102204.0913.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Ekdahl, Carl, Joshua E. Coleman e Brian Trent McCuistian. "Beam Breakup in an Advanced Linear Induction Accelerator". IEEE Transactions on Plasma Science 44, n.º 7 (julho de 2016): 1094–102. http://dx.doi.org/10.1109/tps.2016.2571123.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Sharma, Archana, K. Senthil, D. D. Praveen Kumar, S. Mitra, V. Sharma, A. Patel, D. K. Sharma et al. "Preliminary results of Linear Induction Accelerator LIA-200". Journal of Instrumentation 5, n.º 05 (4 de maio de 2010): P05001. http://dx.doi.org/10.1088/1748-0221/5/05/p05001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Chen, Yinbao, e M. Reiser. "Radial focusing in a linear induction accelerator gap". Journal of Applied Physics 65, n.º 9 (maio de 1989): 3324–28. http://dx.doi.org/10.1063/1.342643.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Ekdahl, Carl. "Tuning the DARHT Long-Pulse Linear Induction Accelerator". IEEE Transactions on Plasma Science 41, n.º 10 (outubro de 2013): 2774–80. http://dx.doi.org/10.1109/tps.2013.2256933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Ekdahl, Carl, E. O. Abeyta, P. Aragon, R. Archuleta, G. Cook, D. Dalmas, K. Esquibel et al. "Beam Dynamics in a Long-pulse Linear Induction Accelerator". Journal of the Korean Physical Society 59, n.º 6(1) (15 de dezembro de 2011): 3448–52. http://dx.doi.org/10.3938/jkps.59.3448.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Ekdahl, Carl, Carl A. Carlson, Daniel K. Frayer, B. Trent McCuistian, Christopher B. Mostrom, Martin E. Schulze e Carsten H. Thoma. "Emittance Growth in the DARHT-II Linear Induction Accelerator". IEEE Transactions on Plasma Science 45, n.º 11 (novembro de 2017): 2962–73. http://dx.doi.org/10.1109/tps.2017.2755861.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Akimov, A. V., V. E. Akimov, P. A. Bak, V. D. Bochkov, L. T. Vekhoreva, A. A. Korepanov, P. V. Logachev, A. N. Panov, D. A. Starostenko e O. V. Shilin. "A pulse power supply of the linear induction accelerator". Instruments and Experimental Techniques 55, n.º 2 (março de 2012): 218–24. http://dx.doi.org/10.1134/s0020441212010241.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Ekdahl, Carl. "Electron-Beam Corkscrew Motion in an Advanced Linear Induction Accelerator". IEEE Transactions on Plasma Science 49, n.º 11 (novembro de 2021): 3548–53. http://dx.doi.org/10.1109/tps.2021.3120877.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei e 刘大刚 Liu Dagang. "Numerical simulation of beam focusing magnetic field in linear induction accelerator". High Power Laser and Particle Beams 22, n.º 6 (2010): 1331–34. http://dx.doi.org/10.3788/hplpb20102206.1331.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Batrakov, Aleksandr M., Pavel V. Logatchev, Anton V. Pavlenko, Vladislav Ya Sazansky e Georgy A. Fatkin. "The Control System of Linear Induction Accelerator for X-Ray Radiography". Siberian Journal of Physics 5, n.º 3 (1 de outubro de 2010): 98–105. http://dx.doi.org/10.54362/1818-7919-2010-5-3-98-105.

Texto completo da fonte
Resumo:
The structure and hardware of control system for flash X-Ray radiography complex currently under construction in BINP, SB RAS are discussed in this paper. Special features of this control system are: high amount of channels, nanosecond times of main processes, work in environment of powerful noises from pulsed high-voltage devices
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Ekdahl, C., E. O. Abeyta, H. Bender, W. Broste, C. Carlson, L. Caudill, K. C. D. Chan et al. "Initial electron-beam results from the DARHT-II linear induction accelerator". IEEE Transactions on Plasma Science 33, n.º 2 (abril de 2005): 892–900. http://dx.doi.org/10.1109/tps.2005.845115.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Ekdahl, Carl, P. Allison, J. E. Coleman, T. Kaupilla, B. T. McCuistian, D. C. Moir e M. Schulze. "Steering an intense relativistic electron beam in a linear induction accelerator". Review of Scientific Instruments 91, n.º 2 (1 de fevereiro de 2020): 026102. http://dx.doi.org/10.1063/1.5125421.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Petzoldt, Ronald, Neil Alexander, Lane Carlson, Eric Cotner, Dan Goodin e Robert Kratz. "Linear Induction Accelerator with Magnetic Steering for Inertial Fusion Target Injection". Fusion Science and Technology 68, n.º 2 (setembro de 2015): 308–13. http://dx.doi.org/10.13182/fst14-915.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Yu Haijun, 禹海军, 朱隽 Zhu Jun, 江孝国 Jiang Xiaoguo, 王远 Wang Yuan, 陈楠 Chen Nan, 张振涛 Zhang Zhentao, 戴文华 Dai Wenhua e 刘承俊 Liu Chengjun. "Damage diagnosis for bremsstrahlung converter target of Dragon-Ⅰ linear induction accelerator". High Power Laser and Particle Beams 23, n.º 4 (2011): 1035–38. http://dx.doi.org/10.3788/hplpb20112304.1035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Ray, R., e A. D. Datta. "An approach to the development of a small-scale linear induction accelerator". Journal of Physics D: Applied Physics 21, n.º 9 (14 de setembro de 1988): 1336–41. http://dx.doi.org/10.1088/0022-3727/21/9/004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Bogdan, O. V., V. I. Karas’, E. A. Kornilov e O. V. Manuilenko. "2.5-Dimensional numerical simulation of a high-current ion linear induction accelerator". Plasma Physics Reports 34, n.º 8 (agosto de 2008): 667–77. http://dx.doi.org/10.1134/s1063780x08080059.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Ekdahl, Carl. "The Ion-Hose Instability in a High-Current Multipulse Linear Induction Accelerator". IEEE Transactions on Plasma Science 47, n.º 1 (janeiro de 2019): 300–306. http://dx.doi.org/10.1109/tps.2018.2872472.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Ekdahl, C., E. O. Abeyta, P. Aragon, R. Archuleta, R. Bartsch, H. Bender, R. Briggs et al. "Long-pulse beam stability experiments on the DARHT-II linear induction accelerator". IEEE Transactions on Plasma Science 34, n.º 2 (abril de 2006): 460–66. http://dx.doi.org/10.1109/tps.2006.872481.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Denno, K. "Longitudinal and Radial Mhd Linear Induction Accelerator with Hot Conducting Plasma Core". IEEE Transactions on Nuclear Science 32, n.º 5 (outubro de 1985): 3216–18. http://dx.doi.org/10.1109/tns.1985.4334324.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia