Teses / dissertações sobre o tema "Linear equations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Linear equations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Yesilyurt, Deniz. "Solving Linear Diophantine Equations And Linear Congruential Equations". Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-19247.
Texto completo da fonteChen, Huyuan. "Fully linear elliptic equations and semilinear fractionnal elliptic equations". Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4001/document.
Texto completo da fonteThis thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term
Goedhart, Eva Govinda. "Explicit bounds for linear difference equations /". Electronic thesis, 2005. http://etd.wfu.edu/theses/available/etd-05102005-222845/.
Texto completo da fonteJonklass, Raymond. "Learners' strategies for solving linear equations". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52915.
Texto completo da fonteENGLISH ABSTRACT: Algebra deals amongst others with the relationship between variables. It differs from Arithmetic amongst others as there is not always a numerical solution to the problem. An algebraic expression can even be the solution to the problem in Algebra. The variables found in Algebra are often represented by letters such as X, y, etc. Equations are an integral part of Algebra. To solve an equation, the value of an unknown must be determined so that the left hand side of the equation is equal to the right hand side. There are various ways in which the solving of equations can be taught. The purpose of this study is to determine the existence of a cognitive gap as described by Herseovies & Linchevski (1994) in relation to solving linear equations. When solving linear equations, an arithmetical approach is not always effective. A new way of structural thinking is needed when solving linear equations in their different forms. In this study, learners' intuitive, informal ways of solving linear equations were examined prior to any formal instruction and before the introduction of algebraic symbols and notation. This information could help educators to identify the difficulties learners have when moving from solving arithmetical equations to algebraic equations. The learners' errors could help educators plan effective ways of teaching strategies when solving linear equations. The research strategy for this study was both quantitative and qualitative. Forty-two Grade 8 learners were chosen to individually do assignments involving different types of linear equations. Their responses were recorded, coded and summarised. Thereafter the learners' responses were interpreted, evaluated and analysed. Then a representative sample of fourteen learners was chosen randomly from the same class and semi-structured interviews were conducted with them From these interviews the learners' ways of thinking when solving linear equations, were probed. This study concludes that a cognitive gap does exist in the context of the investigation. Moving from arithmetical thinking to algebraic thinking requires a paradigm shift. To make adequate provision for this change in thinking, careful curriculum planning is required.
AFRIKAANSE OPSOMMING: Algebra behels onder andere die verwantskap tussen veranderlikes. Algebra verskil van Rekenkunde onder andere omdat daar in Algebra nie altyd 'n numeriese oplossing vir die probleem is nie. InAlgebra kan 'n algebraïese uitdrukking somtyds die oplossing van 'n probleem wees. Die veranderlikes in Algebra word dikwels deur letters soos x, y, ens. voorgestel. Vergelykings is 'n integrale deel van Algebra. Om vergelykings op te los, moet 'n onbekende se waarde bepaal word, om die linkerkant van die vergelyking gelyk te maak aan die regterkant. Daar is verskillende maniere om die oplossing van algebraïese vergelykings te onderrig. Die doel van hierdie studie is om die bestaan van 'n sogenaamde "kognitiewe gaping" soos beskryf deur Herseovies & Linchevski (1994), met die klem op lineêre vergelykings, te ondersoek. Wanneer die oplossing van 'n linêere vergelyking bepaal word, is 'n rekenkundige benadering nie altyd effektiefnie. 'n Heel nuwe, strukturele manier van denke word benodig wanneer verskillende tipes linêere vergelykings opgelos word. In hierdie studie word leerders se intuitiewe, informele metodes ondersoek wanneer hulle lineêre vergelykings oplos, voordat hulle enige formele metodes onderrig is en voordat hulle kennis gemaak het met algebraïese simbole en notasie. Hierdie inligting kan opvoeders help om leerders se kognitiewe probleme in verband met die verskil tussen rekenkundige en algebraïese metodes te identifiseer.Die foute wat leerders maak, kan opvoeders ook help om effektiewe onderrigmetodes te beplan, wanneer hulle lineêre vergelykings onderrig. As leerders eers die skuif van rekenkundige metodes na algebrarese metodes gemaak het, kan hulle besef dat hul primitiewe metodes nie altyd effektief is nie. Die navorsingstrategie wat in hierdie studie aangewend is, is kwalitatief en kwantitatief Twee-en-veertig Graad 8 leerders is gekies om verskillende tipes lineêre vergelykings individueel op te los. Hul antwoorde is daarna geïnterpreteer, geëvalueer en geanaliseer. Daarna is veertien leerders uit hierdie groep gekies en semigestruktureerde onderhoude is met hulle gevoer. Vanuit die onderhoude kon 'n dieper studie van die leerders se informele metodes van oplossing gemaak word. Die gevolgtrekking wat in hierdie studie gemaak word, is dat daar wel 'n kognitiewe gaping bestaan in die konteks van die studie. Leerders moet 'n paradigmaskuif maak wanneer hulle van rekenkundige metodes na algebraïese metodes beweeg. Hierdie klemverskuiwing vereis deeglike kurrikulumbeplanning.
Altassan, Alaa Abdullah. "Linear equations over free Lie algebras". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/linear-equations-over-free-liealgebras(6e29b286-1869-4207-b054-8baab98e70df).html.
Texto completo da fonteChen, Hua, Wei-Xi Li e Chao-Jiang Xu. "Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations". Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3028/.
Texto completo da fonteHafez, Salah Taha. "Continued fractions and solutions of linear and non-linear lattice equations". Thesis, University of Kent, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236725.
Texto completo da fonteTorshage, Axel. "Linear Functional Equations and Convergence of Iterates". Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-56450.
Texto completo da fonteGrey, David John. "Parallel solution of power system linear equations". Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5429/.
Texto completo da fonteSerna, Rodrigo. "Solving Linear Systems of Equations in Hardware". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200610.
Texto completo da fontePEI, HUILING. "EXPLORING BOOTSTRAP APPLICATIONS TO LINEAR STRUCTURAL EQUATIONS". University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1021928281.
Texto completo da fonteJimenez, Amelia. "Hands-on equations program: An approach to teaching linear equations using manipulatives". Scholarly Commons, 2011. https://scholarlycommons.pacific.edu/uop_etds/94.
Texto completo da fonteFan, Ka-wing. "Prime solutions in arithmetic progressions of some quadratic equations and linear equations /". Hong Kong : University of HOng Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23540308.
Texto completo da fonteDimakos, Michail. "Linear, linearisable and integrable nonlinear PDEs". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607875.
Texto completo da fontePorter, Annabelle Louise. "The evolution of equation-solving: Linear, quadratic, and cubic". CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/3069.
Texto completo da fonteJohnson, Solomon Nathan. "Best simultaneous approximation in normed linear spaces". Thesis, Rhodes University, 2018. http://hdl.handle.net/10962/58985.
Texto completo da fonteDe, Villiers Magdaline. "Existence theory for linear vibration models of elastic bodies". Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-10072009-201522.
Texto completo da fonteLe, Gia Quoc Thong. "Approximation of linear partial differential equations on spheres". Texas A&M University, 2003. http://hdl.handle.net/1969.1/22.
Texto completo da fonteBenner, Peter, Enrique Quintana-Ortí e Gregorio Quintana-Ortí. "Solving Linear Matrix Equations via Rational Iterative Schemes". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601460.
Texto completo da fonteHendriks, Peter Anne. "Algebraic aspects of linear differential and difference equations". [S.l. : [Groningen] : s.n.] ; [University Library Groningen] [Host], 1996. http://irs.ub.rug.nl/ppn/153769580.
Texto completo da fonteBecker, Dulcenéia. "Parallel unstructured solvers for linear partial differential equations". Thesis, Cranfield University, 2006. http://hdl.handle.net/1826/4140.
Texto completo da fonteQi, Yuan-Wei. "The blow-up of quasi-linear parabolic equations". Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253381.
Texto completo da fonteDavidson, Bryan Duncan. "Recursive projection for semi-linear partial differential equations". Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294932.
Texto completo da fonteCaramanis, Constantine (Constantine Michael) 1977. "Solving linear partial differential equations via semidefinite optimization". Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8949.
Texto completo da fonteIncludes bibliographical references (p. 49-51).
Using recent progress on moment problems, and their connections with semidefinite optimization, we present in this thesis a new methodology based on semidefinite optimization, to obtain a hierarchy of upper and lower bounds on both linear and nonlinear functionals defined on solutions of linear partial differential equations. We apply the proposed methods to examples of PDEs in one and two dimensions with very encouraging results. We also provide computational evidence that the semidefinite constraints are critically important in improving the quality of the bounds, that is without them the bounds are weak.
by Constantine Caramanis.
S.M.
van, Heerden Francois A. "Nonlinear Schrödinger Type Equations with Asymptotically Linear Terms". DigitalCommons@USU, 2002. https://digitalcommons.usu.edu/etd/7089.
Texto completo da fontePalitta, Davide <1990>. "Numerical solution of large-scale linear matrix equations". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amsdottorato.unibo.it/8342/1/tesi_completa2.pdf.
Texto completo da fonteSaravi, Masoud. "Numerical solution of linear ordinary differential equations and differential-algebraic equations by spectral methods". Thesis, Open University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446280.
Texto completo da fonteMathia, Karl. "Solutions of linear equations and a class of nonlinear equations using recurrent neural networks". PDXScholar, 1996. https://pdxscholar.library.pdx.edu/open_access_etds/1355.
Texto completo da fonteZhang, Junchi. "GPU computing of Heat Equations". Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-theses/515.
Texto completo da fonteTsang, Siu Chung. "Preconditioners for linear parabolic optimal control problems". HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/464.
Texto completo da fonteSpence, Euan Alastair. "Boundary value problems for linear elliptic PDEs". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609476.
Texto completo da fonteDuelli, Markus Michael. "Functional calculus for bisectorial operators and applications to linear and non-linear evolution equations /". Berlin : Logos-Verl, 2005. http://deposit.ddb.de/cgi-bin/dokserv?id=2619697&prov=M&dok_var=1&dok_ext=htm.
Texto completo da fonteTorres, Ledesma César Enrique. "Non linear ellipter equations with non-local regional operators". Tesis, Universidad de Chile, 2013. http://www.repositorio.uchile.cl/handle/2250/115927.
Texto completo da fonteEsta tesis consiste de cinco partes. En la primera parte se considera el problema de Dirichlet lineal y no lineal con una difusi\'on no local regional definido implicitamente por \!\!donde $0< \alpha < 1$, $\rho \in C(\overline)$ y $\lambda dist(x,\partial \Omega) \leq \rho (x) \leq dist(x, \partial \Omega)$ con $\lambda \in (0,1]$, $x\in \Omega$. Haciendo uso del teorema de Lax-Milgran y el Teorema del paso de la monta\~na se demuestra la existencia de soluciones d\'ebiles. En la segunda parte, se considera la ecuaci\'on de Schr\"odinger no lineal con difusi\'on no local regional {\small \begin{eqnarray}\label{Aeq04-} \epsilon^{2\alpha} (-\Delta)_{\rho}^{\alpha}u + u = f(u) \quad \mbox{in}\quad \mathbb{R}^{n},\quad u \in H^{\alpha}(\mathbb{R}^{n}), \end{eqnarray}} \!\!donde $0< \alpha <1$, $\epsilon>0$, $n\geq 2$ y $f:\mathbb{R} \to \mathbb{R}$ es super-lineal y tiene un crecimiento sub-critico. El operador $(-\Delta)_{\rho}^{\alpha}$ es el laplaciano no local regional, con rango de alcance determinado por una funci\'on positiva $\rho \in C(\mathbb{R}^{n}, \mathbb{R}^{+})$ y definido por {\small \begin{eqnarray}\label{Aeq05-} \int_{\mathbb{R}^{n}} \!\!\!\!(-\Delta)_{\rho}^{\alpha} uvdx = \int_{\mathbb{R}^{n}}\!\!\int_{B(0,\rho (x))} \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\frac{[u(x+z) - u(x)][v(x+z) - v(x)]}{|z|^{n+2\alpha}}dzdx. \end{eqnarray}} \!\!Se prueba la existencia de soluci\'on d\'ebil para (\ref{Aeq04-}) aplicando el Teorema del paso de la monta\~na al funcional $I_{\rho}$ definido en $H_{\rho}^{\alpha}(\mathbb{R}^{n})$, combinado con un argumento de comparaci\'on creado por Rabinowitz. El objetivo principal de la tercera parte es estudiar el comportamiento de concentraci\'on de la soluci\'on d\'ebil de la ecuaci\'on (\ref{Aeq04-}) con $f(s) = s^{p}$, cuando $\epsilon \to 0$. En la cuarta parte se estudia el resultado de simetr\'ia para las soluciones ground state de (\ref{Aeq04-}). Para tal prop\'osito, se combina los rearreglos de funciones con los m\'etodos variacionales. Finalmente, se considera un sistema Hamiltoniano fraccionario {\small \begin{eqnarray}\label{Aeq08-} _{t}D_{\infty}^{\alpha}(_{-\infty}D_{t}^{\alpha}u(t)) + L(t)u(t) = & \nabla W(t,u(t)) \end{eqnarray}} \!\!donde $\alpha \in (1/2,1)$, $t\in \mathbb{R}$, $u\in \mathbb{R}^{n}$, $L\in C(\mathbb{R}, \mathbb{R}^{n\times n})$ es una matriz sim\'etrica positiva definida para todo $t\in \mathbb{R}$, $W\in C^{1}(\mathbb{R} \times \mathbb{R}^{n}, \mathbb{R})$ y $\nabla W (t,u)$ es el gradiente de $W$ en $u$. Se demuestra que (\ref{Aeq08-}) posee al menos una soluci\'on no trivial via el Teorema del paso de la monta\~na.
Nabti, Abderrazak. "Non linear, non-local evolution equations : theory and application". Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS032.
Texto completo da fonteOur objective in this thesis is to study the existence of local solutions, existence global and blow up of solutions at a finite time to some nonlinear nonlocal Schrödinger equations. In the case when a solution blows-up at a finite time T < 1, we obtain an upper estimate of the life span of solutions. In the first chapter, we consider a nonlinear Schrödinger equation on RN. We first prove local existence of solution for any initial condition in L2 space. Then we prove nonexistence of a nontrivial global weak solution. Furthermore, we prove that the L2-norm of the local intime L2-solution blows up at a finite time. The second chapter is dedicated to study an initial value problem for the nonlocal intime nonlinear Schrödinger equation. Using the test function method, we derive a blow-up result. Then based on integral inequalities, we estimate the life span of blowing-up solutions. In the chapter 3, we prove nonexistence result of a space higher-order nonlinear Schrödinger equation. Then, we obtain an upper bound of the life span of solutions. Furthermore, the necessary conditions for the existence of local or global solutions are provided. Next, we extend our results to the 2 _ 2-system. Our method of proof rests on a judicious choice of the test function in the weak formulation of the equation. Finally, we consider a nonlinear nonlocal in time Schrödinger equation on the Heisenberg group. We prove nonexistence of non-trivial global weak solution of our problem. Furthermore, we give an upper bound of the life span of blowing up solutions
Roidot, Kristelle. "Numerical study of non-linear dispersive partial differential equations". Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00692445.
Texto completo da fonteKnight, Christopher J. K. "Freonts in non-linear wave equations with spatial inhomogeneity". Thesis, University of Surrey, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549460.
Texto completo da fonteKong, Yafang, e 孔亚方. "On linear equations in primes and powers of two". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50533769.
Texto completo da fontepublished_or_final_version
Mathematics
Doctoral
Doctor of Philosophy
Smith, James A. "“Looking for nothing" : Bayes linear methods for solving equations". Thesis, Durham University, 1993. http://etheses.dur.ac.uk/2207/.
Texto completo da fonteSproule, Olive Elizabeth. "The development of concepts of linear and quadratic equations". Thesis, Queen's University Belfast, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314224.
Texto completo da fonteLee, Sang-Gu. "Linear Operators Strongly Preserving Polynomial Equations Over Antinegative Semirings". DigitalCommons@USU, 1991. https://digitalcommons.usu.edu/etd/6984.
Texto completo da fonteKisela, Tomáš. "Basics of Qualitative Theory of Linear Fractional Difference Equations". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234025.
Texto completo da fonteTzou, Leo. "Linear and nonlinear analysis and applications to mathematical physics /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5761.
Texto completo da fontePerson, Axelle. "Solving homogeneous linear differential equations of order 4 in terms of equations of smaller order". Rennes 1, 2002. http://www.theses.fr/2002REN1A007.
Texto completo da fonteNoble, Raymond Keith. "Some problems associated with linear differential operators". Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238160.
Texto completo da fonteAng, W. T. "Some crack problems in linear elasticity /". Title page, table of contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09PH/09pha581.pdf.
Texto completo da fonteLeccese, Andrew J. "Stability of parametrically forced linear systems /". Online version of thesis, 1994. http://hdl.handle.net/1850/11789.
Texto completo da fonteSauer-Budge, Alexander M. (Alexander Michael) 1972. "Computing upper and lower bounds on linear functional outputs from linear coercive partial differential equations". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/30014.
Texto completo da fonteIncludes bibliographical references (p. 115-123).
Uncertainty about the reliability of numerical approximations frequently undermines the utility of field simulations in the engineering design process: simulations are often not trusted because they lack reliable feedback on accuracy, or are more costly than needed because they are performed with greater fidelity than necessary in an attempt to bolster trust. In addition to devitalized confidence, numerical uncertainty often causes ambiguity about the source of any discrepancies when using simulation results in concert with experimental measurements. Can the discretization error account for the discrepancies, or is the underlying continuum model inadequate? This thesis presents a cost effective method for computing guaranteed upper and lower bounds on the values of linear functional outputs of the exact weak solutions to linear coercive partial differential equations with piecewise polynomial forcing posed on polygonal domains. The method results from exploiting the Lagrangian saddle point property engendered by recasting the output problem as a constrained minimization problem. Localization is achieved by Lagrangian relaxation and the bounds are computed by appeal to a local dual problem. The proposed method computes approximate Lagrange multipliers using traditional finite element discretizations to calculate a primal and an adjoint solution along with well known hybridization techniques to calculate interelement continuity multipliers. At the heart of the method lies a local dual problem by which we transform an infinite-dimensional minimization problem into a finite-dimensional feasibility problem.
(cont.) The computed bounds hold uniformly for any level of refinement, and in the asymptotic convergence regime of the finite element method, the bound gap decreases at twice the rate of the H¹-norm measure of the error in the finite element solution. Given a finite element solution and its output adjoint solution, the method can be used to provide a certificate of precision for the output with an asymptotic complexity that is linear in the number of elements in the finite element discretization. The complete procedure computes approximate outputs to a given precision in polynomial time. Local information generated by the procedure can be used as an adaptive meshing indicator. We apply the method to Poisson's equation and the steady-state advection-diffusion-reaction equation.
by Alexander M. Sauer-Budge.
Ph.D.
Akkineni, Dharma Teja. "A Fourier Spectral Method to Solve Linear and Non-Linear Differential Equations and its Applications". University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1418994964.
Texto completo da fonteAllen, Patrick. "Multiplicities of Linear Recurrence Sequences". Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2942.
Texto completo da fonte馮漢國 e Hon-kwok Fung. "Some linear preserver problems in system theory". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B3121227X.
Texto completo da fonte