Literatura científica selecionada sobre o tema "Linear equations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Linear equations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Linear equations"
Rohn, Jiří. "Interval solutions of linear interval equations". Applications of Mathematics 35, n.º 3 (1990): 220–24. http://dx.doi.org/10.21136/am.1990.104406.
Texto completo da fonteKurzweil, Jaroslav, e Alena Vencovská. "Linear differential equations with quasiperiodic coefficients". Czechoslovak Mathematical Journal 37, n.º 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.
Texto completo da fontePatel, Roshni V., e Jignesh S. Patel. "Optimization of Linear Equations using Genetic Algorithms". Indian Journal of Applied Research 2, n.º 3 (1 de outubro de 2011): 56–58. http://dx.doi.org/10.15373/2249555x/dec2012/19.
Texto completo da fonteFraňková, Dana. "Substitution method for generalized linear differential equations". Mathematica Bohemica 116, n.º 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.
Texto completo da fonteSchwabik, Štefan. "Linear Stieltjes integral equations in Banach spaces". Mathematica Bohemica 124, n.º 4 (1999): 433–57. http://dx.doi.org/10.21136/mb.1999.125994.
Texto completo da fonteCecchi, Mariella, Zuzana Došlá, Mauro Marini e Ivo Vrkoč. "Asymptotic properties for half-linear difference equations". Mathematica Bohemica 131, n.º 4 (2006): 347–63. http://dx.doi.org/10.21136/mb.2006.133970.
Texto completo da fonteDavies, Alan, e Rainer Kress. "Linear Integral Equations". Mathematical Gazette 74, n.º 470 (dezembro de 1990): 405. http://dx.doi.org/10.2307/3618171.
Texto completo da fonteS., F., e Rainer Kress. "Linear Integral Equations." Mathematics of Computation 56, n.º 193 (janeiro de 1991): 379. http://dx.doi.org/10.2307/2008551.
Texto completo da fonteSTEWART, G. W. "Solving Linear Equations". Science 236, n.º 4800 (24 de abril de 1987): 461–62. http://dx.doi.org/10.1126/science.236.4800.461.
Texto completo da fontePAN, V., e J. H. REIF. "Response:Solving Linear Equations". Science 236, n.º 4800 (24 de abril de 1987): 462–63. http://dx.doi.org/10.1126/science.236.4800.462.
Texto completo da fonteTeses / dissertações sobre o assunto "Linear equations"
Yesilyurt, Deniz. "Solving Linear Diophantine Equations And Linear Congruential Equations". Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-19247.
Texto completo da fonteChen, Huyuan. "Fully linear elliptic equations and semilinear fractionnal elliptic equations". Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4001/document.
Texto completo da fonteThis thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term
Goedhart, Eva Govinda. "Explicit bounds for linear difference equations /". Electronic thesis, 2005. http://etd.wfu.edu/theses/available/etd-05102005-222845/.
Texto completo da fonteJonklass, Raymond. "Learners' strategies for solving linear equations". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52915.
Texto completo da fonteENGLISH ABSTRACT: Algebra deals amongst others with the relationship between variables. It differs from Arithmetic amongst others as there is not always a numerical solution to the problem. An algebraic expression can even be the solution to the problem in Algebra. The variables found in Algebra are often represented by letters such as X, y, etc. Equations are an integral part of Algebra. To solve an equation, the value of an unknown must be determined so that the left hand side of the equation is equal to the right hand side. There are various ways in which the solving of equations can be taught. The purpose of this study is to determine the existence of a cognitive gap as described by Herseovies & Linchevski (1994) in relation to solving linear equations. When solving linear equations, an arithmetical approach is not always effective. A new way of structural thinking is needed when solving linear equations in their different forms. In this study, learners' intuitive, informal ways of solving linear equations were examined prior to any formal instruction and before the introduction of algebraic symbols and notation. This information could help educators to identify the difficulties learners have when moving from solving arithmetical equations to algebraic equations. The learners' errors could help educators plan effective ways of teaching strategies when solving linear equations. The research strategy for this study was both quantitative and qualitative. Forty-two Grade 8 learners were chosen to individually do assignments involving different types of linear equations. Their responses were recorded, coded and summarised. Thereafter the learners' responses were interpreted, evaluated and analysed. Then a representative sample of fourteen learners was chosen randomly from the same class and semi-structured interviews were conducted with them From these interviews the learners' ways of thinking when solving linear equations, were probed. This study concludes that a cognitive gap does exist in the context of the investigation. Moving from arithmetical thinking to algebraic thinking requires a paradigm shift. To make adequate provision for this change in thinking, careful curriculum planning is required.
AFRIKAANSE OPSOMMING: Algebra behels onder andere die verwantskap tussen veranderlikes. Algebra verskil van Rekenkunde onder andere omdat daar in Algebra nie altyd 'n numeriese oplossing vir die probleem is nie. InAlgebra kan 'n algebraïese uitdrukking somtyds die oplossing van 'n probleem wees. Die veranderlikes in Algebra word dikwels deur letters soos x, y, ens. voorgestel. Vergelykings is 'n integrale deel van Algebra. Om vergelykings op te los, moet 'n onbekende se waarde bepaal word, om die linkerkant van die vergelyking gelyk te maak aan die regterkant. Daar is verskillende maniere om die oplossing van algebraïese vergelykings te onderrig. Die doel van hierdie studie is om die bestaan van 'n sogenaamde "kognitiewe gaping" soos beskryf deur Herseovies & Linchevski (1994), met die klem op lineêre vergelykings, te ondersoek. Wanneer die oplossing van 'n linêere vergelyking bepaal word, is 'n rekenkundige benadering nie altyd effektiefnie. 'n Heel nuwe, strukturele manier van denke word benodig wanneer verskillende tipes linêere vergelykings opgelos word. In hierdie studie word leerders se intuitiewe, informele metodes ondersoek wanneer hulle lineêre vergelykings oplos, voordat hulle enige formele metodes onderrig is en voordat hulle kennis gemaak het met algebraïese simbole en notasie. Hierdie inligting kan opvoeders help om leerders se kognitiewe probleme in verband met die verskil tussen rekenkundige en algebraïese metodes te identifiseer.Die foute wat leerders maak, kan opvoeders ook help om effektiewe onderrigmetodes te beplan, wanneer hulle lineêre vergelykings onderrig. As leerders eers die skuif van rekenkundige metodes na algebrarese metodes gemaak het, kan hulle besef dat hul primitiewe metodes nie altyd effektief is nie. Die navorsingstrategie wat in hierdie studie aangewend is, is kwalitatief en kwantitatief Twee-en-veertig Graad 8 leerders is gekies om verskillende tipes lineêre vergelykings individueel op te los. Hul antwoorde is daarna geïnterpreteer, geëvalueer en geanaliseer. Daarna is veertien leerders uit hierdie groep gekies en semigestruktureerde onderhoude is met hulle gevoer. Vanuit die onderhoude kon 'n dieper studie van die leerders se informele metodes van oplossing gemaak word. Die gevolgtrekking wat in hierdie studie gemaak word, is dat daar wel 'n kognitiewe gaping bestaan in die konteks van die studie. Leerders moet 'n paradigmaskuif maak wanneer hulle van rekenkundige metodes na algebraïese metodes beweeg. Hierdie klemverskuiwing vereis deeglike kurrikulumbeplanning.
Altassan, Alaa Abdullah. "Linear equations over free Lie algebras". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/linear-equations-over-free-liealgebras(6e29b286-1869-4207-b054-8baab98e70df).html.
Texto completo da fonteChen, Hua, Wei-Xi Li e Chao-Jiang Xu. "Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations". Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3028/.
Texto completo da fonteHafez, Salah Taha. "Continued fractions and solutions of linear and non-linear lattice equations". Thesis, University of Kent, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236725.
Texto completo da fonteTorshage, Axel. "Linear Functional Equations and Convergence of Iterates". Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-56450.
Texto completo da fonteGrey, David John. "Parallel solution of power system linear equations". Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5429/.
Texto completo da fonteSerna, Rodrigo. "Solving Linear Systems of Equations in Hardware". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200610.
Texto completo da fonteLivros sobre o assunto "Linear equations"
Kanwal, Ram P. Linear Integral Equations. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6012-1.
Texto completo da fonteKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-97146-4.
Texto completo da fonteKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0559-3.
Texto completo da fonteKanwal, Ram P. Linear Integral Equations. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-0765-8.
Texto completo da fonteKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9593-2.
Texto completo da fonteLinear integral equations. 2a ed. Boston: Birkhäuser, 1997.
Encontre o texto completo da fonteLovitt, William Vernon. Linear integral equations. Mineola, N.Y: Dover Publications, 2005.
Encontre o texto completo da fonteKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999.
Encontre o texto completo da fonteKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Encontre o texto completo da fonteWoodford, Chris. Solving linear and non-linear equations. New York: Ellis Horwood, 1992.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Linear equations"
Afriat, S. N. "Linear Equations". In Linear Dependence, 67–88. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4273-5_7.
Texto completo da fonteMiyake, Toshitsune. "Linear Equations". In Linear Algebra, 33–59. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6994-1_2.
Texto completo da fonteMüller, P. C., e W. O. Schiehlen. "Matrix equations". In Linear vibrations, 296–306. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5047-4_13.
Texto completo da fonteStroud, K. A., e Dexter Booth. "Linear equations and simultaneous linear equations". In Foundation Mathematics, 184–202. London: Macmillan Education UK, 2009. http://dx.doi.org/10.1057/978-0-230-36672-5_5.
Texto completo da fonteKinzel, Wolfgang, e Georg Reents. "Linear Equations". In Physics by Computer, 47–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-46839-1_3.
Texto completo da fonteHolden, K., e A. W. Pearson. "Linear Equations". In Introductory Mathematics for Economics and Business, 1–42. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_1.
Texto completo da fonteWoodford, C., e C. Phillips. "Linear Equations". In Numerical Methods with Worked Examples: Matlab Edition, 17–45. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1366-6_2.
Texto completo da fonteRedfern, Darren, e Colin Campbell. "Linear Equations". In The Matlab® 5 Handbook, 21–41. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2170-8_3.
Texto completo da fonteRao, A. Ramachandra, e P. Bhimasankaram. "Linear equations". In Texts and Readings in Mathematics, 185–217. Gurgaon: Hindustan Book Agency, 2000. http://dx.doi.org/10.1007/978-93-86279-01-9_6.
Texto completo da fonteVerhulst, Ferdinand. "Linear Equations". In Universitext, 69–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61453-8_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Linear equations"
Bronstein, Manuel. "Linear ordinary differential equations". In Papers from the international symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/143242.143264.
Texto completo da fonteZadrzyńska, Ewa, e Wojciech M. Zajączkowski. "Some linear parabolic system in Besov spaces". In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-36.
Texto completo da fonteFREDET, A. "ALGORITHMS AROUND LINEAR DIFFERENTIAL EQUATIONS". In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770752_0018.
Texto completo da fonteBerkenbosch, Maint. "Moduli spaces for linear differential equations". In The Conference on Differential Equations and the Stokes Phenomenon. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776549_0002.
Texto completo da fonteMIGUEL, JOSÉ J., ANDREI SHINDIAPIN e ARCADY PONOSOV. "STABILITY AND LINEAR CHAIN TRICK". In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0194.
Texto completo da fonteGuihong Wang, Haiyan Liu e Xiangfeng Liu. "The application of excel in solving linear equations and nonlinear equation". In 2011 International Conference on Computer Science and Service System (CSSS). IEEE, 2011. http://dx.doi.org/10.1109/csss.2011.5974400.
Texto completo da fonteČermák, Jan A. N. "The Schröder equation and asymptotic properties of linear delay differential equations". In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.6.
Texto completo da fonteChochiev, T. Z. "On non-linear equation, generalizing the equations of the Riccati class". In General question of world science. "Л-Журнал", 2018. http://dx.doi.org/10.18411/gq-31-03-2018-01.
Texto completo da fonteStevens, B. L. "Derivation of aircraft, linear state equations from implicit nonlinear equations". In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203642.
Texto completo da fonteLASSAS, MATTI. "INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS". In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0199.
Texto completo da fonteRelatórios de organizações sobre o assunto "Linear equations"
Jain, Himanshu, Edmund M. Clarke e Orna Grumberg. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2008. http://dx.doi.org/10.21236/ada476801.
Texto completo da fonteCohen, Herbert E. The Instability of Linear Heterogeneous Lanchester Equations. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1991. http://dx.doi.org/10.21236/ada243519.
Texto completo da fonteNirenberg, Louis. Techniques in Linear and Nonlinear Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1987. http://dx.doi.org/10.21236/ada187109.
Texto completo da fonteRundell, William, e Michael S. Pilant. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1992. http://dx.doi.org/10.21236/ada256012.
Texto completo da fontePilant, Michael S., e William Rundell. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 1989. http://dx.doi.org/10.21236/ada218462.
Texto completo da fonteSubasi, Yigit. Quantum algorithms for linear systems of equations [Slides]. Office of Scientific and Technical Information (OSTI), dezembro de 2017. http://dx.doi.org/10.2172/1774402.
Texto completo da fonteMathia, Karl. Solutions of linear equations and a class of nonlinear equations using recurrent neural networks. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.1354.
Texto completo da fonteParzen, George. Linear Orbits Parameters for the Exact Equations of Motion. Office of Scientific and Technical Information (OSTI), fevereiro de 1994. http://dx.doi.org/10.2172/1119381.
Texto completo da fonteChen, Goong, e Han-Kun Wang. Pointwise Stabilization for Coupled Quasilinear and Linear Wave Equations. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1988. http://dx.doi.org/10.21236/ada190031.
Texto completo da fonteHerzog, K. J., M. D. Morris e T. J. Mitchell. Bayesian approximation of solutions to linear ordinary differential equations. Office of Scientific and Technical Information (OSTI), novembro de 1990. http://dx.doi.org/10.2172/6242347.
Texto completo da fonte