Artigos de revistas sobre o tema "Light Olefines"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Light Olefines".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Du, Lingyin, Yueyang Han e Youhao Xu. "Effect of Molecular Structure of C10 Hydrocarbons on Production of Light Olefins in Catalytic Cracking". Catalysts 13, n.º 6 (16 de junho de 2023): 1013. http://dx.doi.org/10.3390/catal13061013.
Texto completo da fonteVosmerikov, Anton A., Ludmila N. Vosmerikova e Alexander V. Vosmerikov. "STUDYING THE INFLUENCE OF ALKALINE TREATMENT AND MODIFICATION OF ZEOLITE ON ITS PHYSICAL-CHEMICAL AND CATALYTIC PROPERTIES IN THE PROCESS OF PROPANE CONVERSION TO OLEFIN HYDROCARBONS". ChemChemTech 67, n.º 8 (23 de julho de 2024): 50–58. http://dx.doi.org/10.6060/ivkkt.20246708.11t.
Texto completo da fontePawelec, Barbara, Rut Guil-López, Noelia Mota, Jose Fierro e Rufino Navarro Yerga. "Catalysts for the Conversion of CO2 to Low Molecular Weight Olefins—A Review". Materials 14, n.º 22 (17 de novembro de 2021): 6952. http://dx.doi.org/10.3390/ma14226952.
Texto completo da fonteNatarajan, Palani, Deachen Chuskit e Priya. "Readily available alkylbenzenes as precursors for the one-pot preparation of buta-1,3-dienes under DDQ visible-light photocatalysis in benzotrifluoride". Organic Chemistry Frontiers 9, n.º 5 (2022): 1395–402. http://dx.doi.org/10.1039/d1qo01869h.
Texto completo da fonteLiu, Fei, Ting Li, Peng Long Ye, Xiao Dan Wang, Jian Xin Cao e Duan Hua Guo. "Effect of Fe Loading Content on Catalytic Performance of ZSM-5 for the IMTO Process". Advanced Materials Research 648 (janeiro de 2013): 135–38. http://dx.doi.org/10.4028/www.scientific.net/amr.648.135.
Texto completo da fonteKang, Jong Hun. "Development of shape selectivity theory of methanol-to-olefins reaction over small-pore zeolite molecular sieves". Ceramist 25, n.º 2 (30 de junho de 2022): 145–58. http://dx.doi.org/10.31613/ceramist.2022.25.2.01.
Texto completo da fonteYahyazadeh, Arash, Ajay K. Dalai, Wenping Ma e Lifeng Zhang. "Fischer–Tropsch Synthesis for Light Olefins from Syngas: A Review of Catalyst Development". Reactions 2, n.º 3 (21 de julho de 2021): 227–57. http://dx.doi.org/10.3390/reactions2030015.
Texto completo da fonteGholami, Zahra, Fatemeh Gholami, Zdeněk Tišler, Martin Tomas e Mohammadtaghi Vakili. "A Review on Production of Light Olefins via Fluid Catalytic Cracking". Energies 14, n.º 4 (19 de fevereiro de 2021): 1089. http://dx.doi.org/10.3390/en14041089.
Texto completo da fonteSalah Aldeen, Omer Dhia Aldeen, Mustafa Z. Mahmoud, Hasan Sh Majdi, Dhameer A. Mutlak, Khusniddin Fakhriddinovich Uktamov e Ehsan kianfar. "Investigation of Effective Parameters Ce and Zr in the Synthesis of H-ZSM-5 and SAPO-34 on the Production of Light Olefins from Naphtha". Advances in Materials Science and Engineering 2022 (24 de fevereiro de 2022): 1–22. http://dx.doi.org/10.1155/2022/6165180.
Texto completo da fonteGholami, Zahra, Fatemeh Gholami, Zdeněk Tišler, Jan Hubáček, Martin Tomas, Miroslav Bačiak e Mohammadtaghi Vakili. "Production of Light Olefins via Fischer-Tropsch Process Using Iron-Based Catalysts: A Review". Catalysts 12, n.º 2 (28 de janeiro de 2022): 174. http://dx.doi.org/10.3390/catal12020174.
Texto completo da fonteDugkhuntod, Pannida, e Chularat Wattanakit. "A Comprehensive Review of the Applications of Hierarchical Zeolite Nanosheets and Nanoparticle Assemblies in Light Olefin Production". Catalysts 10, n.º 2 (18 de fevereiro de 2020): 245. http://dx.doi.org/10.3390/catal10020245.
Texto completo da fonteEmberru, Ruth Eniyepade, Raj Patel, Iqbal Mohammed Mujtaba e Yakubu Mandafiya John. "A Review of Catalyst Modification and Process Factors in the Production of Light Olefins from Direct Crude Oil Catalytic Cracking". Sci 6, n.º 1 (4 de fevereiro de 2024): 11. http://dx.doi.org/10.3390/sci6010011.
Texto completo da fonteWeber, Daniel, Tina He, Matthew Wong, Christian Moon, Axel Zhang, Nicole Foley, Nicholas J. Ramer e Cheng Zhang. "Recent Advances in the Mitigation of the Catalyst Deactivation of CO2 Hydrogenation to Light Olefins". Catalysts 11, n.º 12 (28 de novembro de 2021): 1447. http://dx.doi.org/10.3390/catal11121447.
Texto completo da fonteAbbas, Hadj Abbas, Zahra Asgar Pour, Mohammed S. Alnafisah, Pablo Gonzalez Cortes, Mustapha El Hariri El Nokab, Ahmed Elshewy e Khaled O. Sebakhy. "Enhanced Catalytic Hydrogenation of Olefins in Sulfur-Rich Naphtha Using Molybdenum Carbide Supported on γ-Al2O3 Spheres under Steam Conditions: Simulating the Hot Separator Stream Process". Materials 17, n.º 10 (11 de maio de 2024): 2278. http://dx.doi.org/10.3390/ma17102278.
Texto completo da fonteShahul Hamid, Muhamed Yusuf, e Muhammad Hafizuddin Mohd Sofi. "Recent modifications of MCM-22 and MOR zeolite in MTO reaction: A review". E3S Web of Conferences 516 (2024): 02009. http://dx.doi.org/10.1051/e3sconf/202451602009.
Texto completo da fonteLee, Joongwon, Seungwon Park, Ung Gi Hong, Jin Oh Jun e In Kyu Song. "Production of Light Olefins Through Catalytic Cracking of C5 Raffinate Over Surface-Modified ZSM-5 Catalyst". Journal of Nanoscience and Nanotechnology 15, n.º 10 (1 de outubro de 2015): 8311–17. http://dx.doi.org/10.1166/jnn.2015.11242.
Texto completo da fonteGholami, Zahra, Fatemeh Gholami, Zdeněk Tišler e Mohammadtaghi Vakili. "A Review on the Production of Light Olefins Using Steam Cracking of Hydrocarbons". Energies 14, n.º 23 (6 de dezembro de 2021): 8190. http://dx.doi.org/10.3390/en14238190.
Texto completo da fonteBakhtiar, Syed ul Hasnain, Sher Ali, Xiaotong Wang, Fulong Yuan, Zhibin Li e Yujun Zhu. "Synthesis of sub-micrometric SAPO-34 by a morpholine assisted two-step hydrothermal route and its excellent MTO catalytic performance". Dalton Transactions 48, n.º 8 (2019): 2606–16. http://dx.doi.org/10.1039/c8dt04559c.
Texto completo da fonteWang, Min, Lucun Wang e Dong Ding. "Electrocatalytic Upgrading of CO2 to Light Olefins in Protonic Ceramic Electrochemical Cells". ECS Meeting Abstracts MA2024-01, n.º 37 (9 de agosto de 2024): 2261. http://dx.doi.org/10.1149/ma2024-01372261mtgabs.
Texto completo da fonteZhang, Di, Jiaoyang Wang, Peijie Zong, Yingyun Qiao e Yuanyu Tian. "Low-carbon conversion of crude oil to C2-C4 olefins by micro Py-GC/MS and a small-scale fluidized-bed reactor". Journal of Physics: Conference Series 2520, n.º 1 (1 de junho de 2023): 012011. http://dx.doi.org/10.1088/1742-6596/2520/1/012011.
Texto completo da fonteWen, Yuan, Chenliang Zhou, Linfei Yu, Qiang Zhang, Wenxiu He e Quansheng Liu. "Research Progress on the Effects of Support and Support Modification on the FTO Reaction Performance of Fe-Based Catalysts". Molecules 28, n.º 23 (24 de novembro de 2023): 7749. http://dx.doi.org/10.3390/molecules28237749.
Texto completo da fonteReinikainen, Matti, Aki Braunschweiler, Sampsa Korpilo, Pekka Simell e Ville Alopaeus. "Two-Step Conversion of CO2 to Light Olefins: Laboratory-Scale Demonstration and Scale-Up Considerations". ChemEngineering 6, n.º 6 (6 de dezembro de 2022): 96. http://dx.doi.org/10.3390/chemengineering6060096.
Texto completo da fonteLiu, Fei, Ting Li, Peng Long Ye, Jian Xin Cao e Duan Hua Guo. "Influence of Parameters on Catalytic Performance over Different Modified ZSM-5 Zeolite for the IMTO Process". Advanced Materials Research 648 (janeiro de 2013): 143–46. http://dx.doi.org/10.4028/www.scientific.net/amr.648.143.
Texto completo da fonteVu, Xuan Hoan, Sura Nguyen, Thanh Tung Dang e Udo Armbruster. "Production of renewable biofuels and chemicals by processing bio-feedstock in conventional petroleum refineries". Journal of Vietnamese Environment 6, n.º 3 (5 de novembro de 2014): 270–75. http://dx.doi.org/10.13141/jve.vol6.no3.pp270-275.
Texto completo da fonteKianfar, Ehsan. "Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: a review". Reviews in Inorganic Chemistry 39, n.º 3 (27 de agosto de 2019): 157–77. http://dx.doi.org/10.1515/revic-2019-0001.
Texto completo da fonteMa, Haowei. "TreatmentImprovements of Catalysts for Higher Yield of Catalytic Cracking". MATEC Web of Conferences 386 (2023): 01004. http://dx.doi.org/10.1051/matecconf/202338601004.
Texto completo da fonteXia, Wei, Qi Sun, Shang Wen Liu, Lin Ping Qiang e Yuan Cun Cui. "SAPO-34/SiO2 Catalysts for the Transformation of Ethanol into Propylene". Advanced Materials Research 1004-1005 (agosto de 2014): 707–10. http://dx.doi.org/10.4028/www.scientific.net/amr.1004-1005.707.
Texto completo da fonteZhang, Xiaoqiao, Jianhong Gong, Xiaoli Wei e Lingtao Liu. "Increased Light Olefin Production by Sequential Dehydrogenation and Cracking Reactions". Catalysts 12, n.º 11 (17 de novembro de 2022): 1457. http://dx.doi.org/10.3390/catal12111457.
Texto completo da fonteYamaguchi, Eiji, Wakako Tanaka e Akichika Itoh. "Olefin Bifunctionalization: A Visible-light Photoredox-catalyzed Aryl Alkoxylation of Olefins". Chemistry - An Asian Journal 14, n.º 1 (6 de dezembro de 2018): 121–24. http://dx.doi.org/10.1002/asia.201801211.
Texto completo da fonteXia, Wei, Qi Sun, Shang Wen Liu, Lin Ping Qiang e Yuan Cun Cui. "Effect of Si/Al2 Ratio on Catalytic Performance of HZSM-5 Zeolites for Conversion of Ethanol to Propylene". Advanced Materials Research 953-954 (junho de 2014): 1121–24. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.1121.
Texto completo da fonteJiao, Feng, Bing Bai, Gen Li, Xiulian Pan, Yihan Ye, Shengcheng Qu, Changqi Xu et al. "Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins". Science 380, n.º 6646 (19 de maio de 2023): 727–30. http://dx.doi.org/10.1126/science.adg2491.
Texto completo da fonteRabeeah Taj, Rabeeah Taj, Erum Pervaiz Erum Pervaiz e Arshad Hussain Arshad Hussain. "Synthesis and Catalytic Activity of IM-5 Zeolite as Naphtha Cracking Catalyst for Light Olefins: A Review". Journal of the chemical society of pakistan 42, n.º 2 (2020): 305. http://dx.doi.org/10.52568/000637.
Texto completo da fonteRabeeah Taj, Rabeeah Taj, Erum Pervaiz Erum Pervaiz e Arshad Hussain Arshad Hussain. "Synthesis and Catalytic Activity of IM-5 Zeolite as Naphtha Cracking Catalyst for Light Olefins: A Review". Journal of the chemical society of pakistan 42, n.º 2 (2020): 305. http://dx.doi.org/10.52568/000637/jcsp/42.02.2020.
Texto completo da fonteErkmen, Berrak, Adem Ozdogan, Ayhan Ezdesir e Gokhan Celik. "Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?" Polymers 15, n.º 4 (9 de fevereiro de 2023): 859. http://dx.doi.org/10.3390/polym15040859.
Texto completo da fonteMohd Sofi, Muhammad Hafizuddin, e Muhamed Yusuf Shahul Hamid. "Alteration of acidity and porosity of Beta zeolite using fibrous silica for light olefin production". E3S Web of Conferences 516 (2024): 02003. http://dx.doi.org/10.1051/e3sconf/202451602003.
Texto completo da fonteGomes, Diana M., Patrícia Neves, Margarida M. Antunes, António J. S. Fernandes, Martyn Pillinger e Anabela A. Valente. "Post-Synthesis Strategies to Prepare Mesostructured and Hierarchical Silicates for Liquid Phase Catalytic Epoxidation". Catalysts 12, n.º 12 (25 de novembro de 2022): 1513. http://dx.doi.org/10.3390/catal12121513.
Texto completo da fonteUlfiati, Ratu. "CATALYTIC PERFORMANCE OF ZSM-5 ZEOLITE IN HEAVY HYDROCARBON CATALYTIC CRACKING: A REVIEW". Scientific Contributions Oil and Gas 42, n.º 1 (6 de agosto de 2020): 29–34. http://dx.doi.org/10.29017/scog.42.1.384.
Texto completo da fonteRussell, Christopher K., Josiah L. Rockey, Rebecca N. Hanna e Jeffrey T. Miller. "Impact of Co-Fed Hydrogen on High Conversion Propylene Aromatization on H-ZSM-5 and Ga/H-ZSM-5". Catalysts 14, n.º 7 (27 de junho de 2024): 405. http://dx.doi.org/10.3390/catal14070405.
Texto completo da fontePaleta, Oldřich, Jaroslav Kvíčala, Zuzana Budková e Hans-Joachim Timpe. "Radical Additions to Fluoroolefins: Experimental Evidence for a Free-Radical Chain Mechanism in the Photo-Initiated Addition of Alcohols to Fluoroolefins". Collection of Czechoslovak Chemical Communications 60, n.º 4 (1995): 636–44. http://dx.doi.org/10.1135/cccc19950636.
Texto completo da fonteHidalgo, José, Michal Zbuzek, Radek Černý e Petr Jíša. "Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality". Open Chemistry 12, n.º 1 (1 de janeiro de 2014): 1–13. http://dx.doi.org/10.2478/s11532-013-0354-9.
Texto completo da fonteSharanda, M. E., A. M. Mylin, O. Yu Zinchenko e V. V. Brei. "Hydrogenation of C`'5 olefins in vapor phase on the copper oxide catalyst". Catalysis and Petrochemistry, n.º 32 (2021): 93–98. http://dx.doi.org/10.15407/kataliz2021.32.093.
Texto completo da fonteYongmei, Zhang, e You Hongjun. "Catalytic Oxidation of Olefins". Open Fuels & Energy Science Journal 4, n.º 1 (14 de outubro de 2011): 9–11. http://dx.doi.org/10.2174/1876973x01104010009.
Texto completo da fonteLiu, Sibao, Bofeng Zhang e Guozhu Liu. "Metal-based catalysts for the non-oxidative dehydrogenation of light alkanes to light olefins". Reaction Chemistry & Engineering 6, n.º 1 (2021): 9–26. http://dx.doi.org/10.1039/d0re00381f.
Texto completo da fonteYang, Lin, Jing Li e Jian Xin Cao. "Synthesis of Light Olefins from CO2 Hydrogenation on Fe/ZSM-5 Catalyst". Applied Mechanics and Materials 423-426 (setembro de 2013): 463–66. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.463.
Texto completo da fonteFerreira, Leonildo A., Yuri C. A. Sokolovicz, Júlia L. Couto e Henri S. Schrekker. "Tandem olefin isomerization/metathesis and volatiles capture: Accessing light olefin blends and broadening the scope to higher olefins". Molecular Catalysis 460 (dezembro de 2018): 36–39. http://dx.doi.org/10.1016/j.mcat.2018.09.006.
Texto completo da fonteNi, Zhijiang, Xiaoyu Chen, Lin Su, Hanyu Shen e Chaochuang Yin. "Effect of Calcination Temperature in Large-Aperture Medium-Entropy Oxide (FeCoCuZnNa)O on CO2 Hydrogenation for Light Olefins". Catalysts 14, n.º 11 (13 de novembro de 2024): 818. http://dx.doi.org/10.3390/catal14110818.
Texto completo da fonteCasadevall, Carla, David Pascual, Jordi Aragón, Arnau Call, Alicia Casitas, Irene Casademont-Reig e Julio Lloret-Fillol. "Light-driven reduction of aromatic olefins in aqueous media catalysed by aminopyridine cobalt complexes". Chemical Science 13, n.º 15 (2022): 4270–82. http://dx.doi.org/10.1039/d1sc06608k.
Texto completo da fonteLari, Tahereh Taherzadeh, Ali Akbar Mirzaei, Hossein Atashi e Hamid Reza Bozorgzadeh. "A Modeling Study of Operating Conditions and Different Supports on Fe-Co-Ce Nanocatalyst and Optimizing of Light Olefins Selectivity in the Fischer-Tropsch Synthesis". Chemistry & Chemical Technology 15, n.º 2 (15 de maio de 2021): 170–82. http://dx.doi.org/10.23939/chcht15.02.170.
Texto completo da fontePing, Guichen, Kai Zheng, Qihua Fang e Gao Li. "Composite Nanostructure of Manganese Cluster and CHA-Type Silicoaluminaphosphates: Enhanced Catalytic Performance in Dimethylether to Light Olefins Conversion". Nanomaterials 11, n.º 1 (24 de dezembro de 2020): 24. http://dx.doi.org/10.3390/nano11010024.
Texto completo da fonteSCOFIELD, C. F., E. BENAZZI, H. CAUFFRIEZ e C. MARCILLY. "Metylcyclohexane conversion to light olefins". Brazilian Journal of Chemical Engineering 15, n.º 2 (junho de 1998): 218–24. http://dx.doi.org/10.1590/s0104-66321998000200018.
Texto completo da fonte