Literatura científica selecionada sobre o tema "Lieb-Robinson bound"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Lieb-Robinson bound".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Lieb-Robinson bound"
Matsuta, Takuro, Tohru Koma e Shu Nakamura. "Improving the Lieb–Robinson Bound for Long-Range Interactions". Annales Henri Poincaré 18, n.º 2 (20 de outubro de 2016): 519–28. http://dx.doi.org/10.1007/s00023-016-0526-1.
Texto completo da fonteWoods, M. P., e M. B. Plenio. "Dynamical error bounds for continuum discretisation via Gauss quadrature rules—A Lieb-Robinson bound approach". Journal of Mathematical Physics 57, n.º 2 (fevereiro de 2016): 022105. http://dx.doi.org/10.1063/1.4940436.
Texto completo da fonteMahoney, Brendan J., e Craig S. Lent. "The Value of the Early-Time Lieb-Robinson Correlation Function for Qubit Arrays". Symmetry 14, n.º 11 (26 de outubro de 2022): 2253. http://dx.doi.org/10.3390/sym14112253.
Texto completo da fonteStrasberg, Philipp, Kavan Modi e Michalis Skotiniotis. "How long does it take to implement a projective measurement?" European Journal of Physics 43, n.º 3 (28 de março de 2022): 035404. http://dx.doi.org/10.1088/1361-6404/ac5a7a.
Texto completo da fonteMoosavian, Ali Hamed, Seyed Sajad Kahani e Salman Beigi. "Limits of Short-Time Evolution of Local Hamiltonians". Quantum 6 (27 de junho de 2022): 744. http://dx.doi.org/10.22331/q-2022-06-27-744.
Texto completo da fonteVershynina, Anna, e Elliott Lieb. "Lieb-Robinson bounds". Scholarpedia 8, n.º 9 (2013): 31267. http://dx.doi.org/10.4249/scholarpedia.31267.
Texto completo da fonteDoyon, Benjamin. "Hydrodynamic Projections and the Emergence of Linearised Euler Equations in One-Dimensional Isolated Systems". Communications in Mathematical Physics 391, n.º 1 (27 de janeiro de 2022): 293–356. http://dx.doi.org/10.1007/s00220-022-04310-3.
Texto completo da fonteIslambekov, Umar, Robert Sims e Gerald Teschl. "Lieb–Robinson Bounds for the Toda Lattice". Journal of Statistical Physics 148, n.º 3 (agosto de 2012): 440–79. http://dx.doi.org/10.1007/s10955-012-0554-2.
Texto completo da fonteNACHTERGAELE, BRUNO, BENJAMIN SCHLEIN, ROBERT SIMS, SHANNON STARR e VALENTIN ZAGREBNOV. "ON THE EXISTENCE OF THE DYNAMICS FOR ANHARMONIC QUANTUM OSCILLATOR SYSTEMS". Reviews in Mathematical Physics 22, n.º 02 (março de 2010): 207–31. http://dx.doi.org/10.1142/s0129055x1000393x.
Texto completo da fonteNachtergaele, Bruno, e Robert Sims. "Lieb-Robinson Bounds and the Exponential Clustering Theorem". Communications in Mathematical Physics 265, n.º 1 (22 de março de 2006): 119–30. http://dx.doi.org/10.1007/s00220-006-1556-1.
Texto completo da fonteTeses / dissertações sobre o assunto "Lieb-Robinson bound"
Islambekov, Umar. "Lieb-Robinson Bounds for the Toda Lattice". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/294026.
Texto completo da fonteBraida, Arthur. "Analog Quantum Computing for NP-Hard Combinatorial Graph Problems". Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1017.
Texto completo da fonteThe main objective of this thesis is to provide theoretical insight into the computational complexity of continuous-time quantum computing (QA and AQC), from understanding the physical phenomenon (AC) that leads to AQC failure to proving short constant-time QA efficiency. To achieve this goal, we use different analytical tools borrowed from theoretical physics like perturbative analysis of quantum systems and the Lieb-Robinson bound on the velocity of correlation in quantum systems. Graph manipulation and spectral graph theory are necessary to derive results on a specific class of graph. We also introduced a new parametrized version of the standard QA to tighten the analysis. First, we want to obtain a mathematical definition of an AC to be easier to grasp when studying a specific class of graph on which we want to solve the Maximum Cut problem. We support our new definition with a proven theorem that links it to exponentially small minimum gap and numerical evidence is brought to justify its more general nature compared to the previous one. With a perturbative analysis, we manage to show that on bipartite graphs, exponentially closing gap can arise if the graph is irregular enough. Our new definition of AC allows us to question the efficiency of AQC to solve it despite the exponentially long runtime the adiabatic theorem imposes to guarantee the optimal solution. The second axis is dedicated to the performance of QA at short constant times. Even though QA is inherently non-local, the LR bound allows us to approximate it with a local evolution. A first approach is used to develop the method and to show the non-triviality of the result, i.e. above random guess. Then we define a notion of local analysis by expressing the approximation ratio with only knowledge of the local structure. A tight and adaptive LR bound is developed allowing us to find a numerical value outperforming quantum and classical (strictly) local algorithms. All this research work has been pursued between Eviden QuantumLab team and the Graphes, Algorithmes et Modèles de Calcul (GAMoC) team at the Laboratoire d'Informatique Fondamentale d'Orléans (LIFO). The numerical work has been implemented using Julia programming Language as well as Python with the QAPTIVA software of Eviden to efficiently simulate the Schrödinger equation
Livros sobre o assunto "Lieb-Robinson bound"
Bru, J. B., e W. de Siqueira Pedra. Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45784-0.
Texto completo da fonteLieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer, 2016.
Encontre o texto completo da fonteBru, J. B., e W. de Siqueira Pedra. Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer, 2016.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Lieb-Robinson bound"
Naaijkens, Pieter. "Lieb-Robinson Bounds". In Quantum Spin Systems on Infinite Lattices, 109–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51458-1_4.
Texto completo da fonteNaaijkens, Pieter. "Applications of Lieb-Robinson Bounds". In Quantum Spin Systems on Infinite Lattices, 151–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51458-1_6.
Texto completo da fonteBru, J. B., e W. de Siqueira Pedra. "Lieb–Robinson Bounds for Multi–commutators". In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 31–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_4.
Texto completo da fonteBru, J. B., e W. de Siqueira Pedra. "Lieb–Robinson Bounds for Non-autonomous Dynamics". In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 63–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_5.
Texto completo da fonteBru, J. B., e W. de Siqueira Pedra. "Introduction". In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_1.
Texto completo da fonteBru, J. B., e W. de Siqueira Pedra. "Algebraic Quantum Mechanics". In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 5–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_2.
Texto completo da fonteBru, J. B., e W. de Siqueira Pedra. "Algebraic Setting for Interacting Fermions on the Lattice". In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 17–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_3.
Texto completo da fonteBru, J. B., e W. de Siqueira Pedra. "Applications to Conductivity Measures". In Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory, 89–101. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45784-0_6.
Texto completo da fonteKliesch, Martin, Christian Gogolin e Jens Eisert. "Lieb-Robinson Bounds and the Simulation of Time-Evolution of Local Observables in Lattice Systems". In Many-Electron Approaches in Physics, Chemistry and Mathematics, 301–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06379-9_17.
Texto completo da fonteCheneau, Marc. "Experimental tests of Lieb–Robinson bounds". In The Physics and Mathematics of Elliott Lieb, 225–45. EMS Press, 2022. http://dx.doi.org/10.4171/90-1/10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Lieb-Robinson bound"
NACHTERGAELE, BRUNO. "LIEB–ROBINSON BOUNDS AND THE EXISTENCE OF INFINITE SYSTEM DYNAMICS". In XVIth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304634_0028.
Texto completo da fonteSIMS, ROBERT. "LIEB-ROBINSON BOUNDS AND QUASI-LOCALITY FOR THE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS". In Proceedings of the QMath11 Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350365_0007.
Texto completo da fonte