Artigos de revistas sobre o tema "LDLrKO"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "LDLrKO".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Dupasquier, Chantal M. C., Elena Dibrov, Annette L. Kneesh, Paul K. M. Cheung, Kaitlin G. Y. Lee, Helen K. Alexander, Behzad K. Yeganeh, Mohammed H. Moghadasian e Grant N. Pierce. "Dietary flaxseed inhibits atherosclerosis in the LDL receptor-deficient mouse in part through antiproliferative and anti-inflammatory actions". American Journal of Physiology-Heart and Circulatory Physiology 293, n.º 4 (outubro de 2007): H2394—H2402. http://dx.doi.org/10.1152/ajpheart.01104.2006.
Texto completo da fonteForrest, Lolita M., Elena Boudyguina, Martha D. Wilson e John S. Parks. "Echium oil reduces atherosclerosis in apoB100-only LDLrKO mice". Atherosclerosis 220, n.º 1 (janeiro de 2012): 118–21. http://dx.doi.org/10.1016/j.atherosclerosis.2011.10.025.
Texto completo da fonteCao, Qiang, Xin Cui, Rui Wu, Lin Zha, Xianfeng Wang, John S. Parks, Liqing Yu, Hang Shi e Bingzhong Xue. "Myeloid Deletion of α1AMPK Exacerbates Atherosclerosis in LDL Receptor Knockout (LDLRKO) Mice". Diabetes 65, n.º 6 (28 de janeiro de 2016): 1565–76. http://dx.doi.org/10.2337/db15-0917.
Texto completo da fonteBi, Xin, Xuewei Zhu, MyNgan Duong, Elena Y. Boudyguina, Martha D. Wilson, Abraham K. Gebre e John S. Parks. "Liver ABCA1 Deletion in LDLrKO Mice Does Not Impair Macrophage Reverse Cholesterol Transport or Exacerbate Atherogenesis". Arteriosclerosis, Thrombosis, and Vascular Biology 33, n.º 10 (outubro de 2013): 2288–96. http://dx.doi.org/10.1161/atvbaha.112.301110.
Texto completo da fonteBaumgartner, Roland, Felipe B. Casagrande, Randi B. Mikkelsen, Martin Berg, Konstantinos A. Polyzos, Maria J. Forteza, Aastha Arora, Thue W. Schwartz, Siv A. Hjorth e Daniel F. J. Ketelhuth. "Disruption of GPR35 Signaling in Bone Marrow-Derived Cells Does Not Influence Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice". Metabolites 11, n.º 7 (23 de junho de 2021): 411. http://dx.doi.org/10.3390/metabo11070411.
Texto completo da fonteSchaftenaar, Frank, Jacob Amersfoort, Hidde Douna, Mara Kröner, Bram Slütter, Ilze Bot, Gijs van Puijvelde e Johan Kuiper. "Vaccination with ApoB100 Derived HLA-A2 Restricted CD8 T Cell Epitopes Did Not Reduce Atherosclerosis in Male LDLrKO hApoB100tg HLA-A2tg Mice". Atherosclerosis Supplements 32 (junho de 2018): 100–101. http://dx.doi.org/10.1016/j.atherosclerosissup.2018.04.307.
Texto completo da fonteJasiecki, Jacek, Monika Targońska, Anna Janaszak-Jasiecka, Magdalena Chmara, Monika Żuk, Leszek Kalinowski, Krzysztof Waleron e Bartosz Wasąg. "Novel Tools for Comprehensive Functional Analysis of LDLR (Low-Density Lipoprotein Receptor) Variants". International Journal of Molecular Sciences 24, n.º 14 (14 de julho de 2023): 11435. http://dx.doi.org/10.3390/ijms241411435.
Texto completo da fonteStrøm, Thea Bismo, Katrine Bjune, Luís Teixeira da Costa e Trond P. Leren. "Strategies to prevent cleavage of the linker region between ligand-binding repeats 4 and 5 of the LDL receptor". Human Molecular Genetics 28, n.º 22 (23 de julho de 2019): 3734–41. http://dx.doi.org/10.1093/hmg/ddz164.
Texto completo da fontePersson, Lena, Cecilia Gälman, Bo Angelin e Mats Rudling. "Importance of Proprotein Convertase Subtilisin/Kexin Type 9 in the Hormonal and Dietary Regulation of Rat Liver Low-Density Lipoprotein Receptors". Endocrinology 150, n.º 3 (13 de novembro de 2008): 1140–46. http://dx.doi.org/10.1210/en.2008-1281.
Texto completo da fonteKim, Meewhi, e Ilya Bezprozvanny. "Differences in Recycling of Apolipoprotein E3 and E4—LDL Receptor Complexes—A Mechanistic Hypothesis". International Journal of Molecular Sciences 22, n.º 9 (10 de maio de 2021): 5030. http://dx.doi.org/10.3390/ijms22095030.
Texto completo da fonteKang, Richard S., e Heike Fölsch. "ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells". Journal of Cell Biology 193, n.º 1 (28 de março de 2011): 51–60. http://dx.doi.org/10.1083/jcb.201012121.
Texto completo da fonteLin, Jean Z., Alexandro J. Martagón, Willa A. Hsueh, John D. Baxter, Jan-Åke Gustafsson, Paul Webb e Kevin J. Phillips. "Thyroid Hormone Receptor Agonists Reduce Serum Cholesterol Independent of the LDL Receptor". Endocrinology 153, n.º 12 (1 de dezembro de 2012): 6136–44. http://dx.doi.org/10.1210/en.2011-2081.
Texto completo da fonteKonecsni, Tuende, Ursula Berka, Angela Pickl-Herk, Gerhard Bilek, Abdul Ghafoor Khan, Leszek Gajdzig, Renate Fuchs e Dieter Blaas. "Low pH-Triggered Beta-Propeller Switch of the Low-Density Lipoprotein Receptor Assists Rhinovirus Infection". Journal of Virology 83, n.º 21 (12 de agosto de 2009): 10922–30. http://dx.doi.org/10.1128/jvi.01312-09.
Texto completo da fonteDuff, Christopher J., Martin J. Scott, Ian T. Kirby, Sue E. Hutchinson, Steve L. Martin e Nigel M. Hooper. "Antibody-mediated disruption of the interaction between PCSK9 and the low-density lipoprotein receptor". Biochemical Journal 419, n.º 3 (14 de abril de 2009): 577–84. http://dx.doi.org/10.1042/bj20082407.
Texto completo da fonteSanguino Otero, Javier, Carmen Rodríguez-Jiménez, Jose Mostaza Prieto, Carlos Rodríguez-Antolín, Ana Carazo Alvarez, Francisco Arrieta Blanco e Sonia Rodríguez-Nóvoa. "Functional Analysis of 3′UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia". Human Mutation 2024 (8 de fevereiro de 2024): 1–15. http://dx.doi.org/10.1155/2024/9964734.
Texto completo da fonteRogers, Justin T., e Edwin J. Weeber. "Reelin and apoE actions on signal transduction, synaptic function and memory formation". Neuron Glia Biology 4, n.º 3 (agosto de 2008): 259–70. http://dx.doi.org/10.1017/s1740925x09990184.
Texto completo da fonteStrøm, Thea Bismo, Katrine Bjune e Trond P. Leren. "Bone morphogenetic protein 1 cleaves the linker region between ligand-binding repeats 4 and 5 of the LDL receptor and makes the LDL receptor non-functional". Human Molecular Genetics 29, n.º 8 (10 de outubro de 2019): 1229–38. http://dx.doi.org/10.1093/hmg/ddz238.
Texto completo da fonteLiou, Je-Wen, Pei-Yi Chen, Wan-Yun Gao e Jui-Hung Yen. "Natural phytochemicals as small-molecule proprotein convertase subtilisin/kexin type 9 inhibitors". Tzu Chi Medical Journal 36, n.º 4 (5 de setembro de 2024): 360–69. http://dx.doi.org/10.4103/tcmj.tcmj_46_24.
Texto completo da fonteVargas-Alarcon, Gilberto, Oscar Perez-Mendez, Julian Ramirez-Bello, Rosalinda Posadas-Sanchez, Hector Gonzalez-Pacheco, Galileo Escobedo, Betzabe Nieto-Lima, Elizabeth Carreon-Torres e Jose Manuel Fragoso. "The c.*52 A/G and c.*773 A/G Genetic Variants in the UTR′3 of the LDLR Gene Are Associated with the Risk of Acute Coronary Syndrome and Lower Plasma HDL-Cholesterol Concentration". Biomolecules 10, n.º 10 (29 de setembro de 2020): 1381. http://dx.doi.org/10.3390/biom10101381.
Texto completo da fonteSuzuki, Yasuhiro, Nobuo Nagai, Kasumi Yamakawa, Yoshinori Muranaka, Kazuya Hokamura e Kazuo Umemura. "Recombinant Tissue-Type Plasminogen Activator Transiently Enhances Blood–Brain Barrier Permeability During Cerebral Ischemia through Vascular Endothelial Growth Factor-Mediated Endothelial Endocytosis in Mice". Journal of Cerebral Blood Flow & Metabolism 35, n.º 12 (29 de julho de 2015): 2021–31. http://dx.doi.org/10.1038/jcbfm.2015.167.
Texto completo da fonteCao, Yunpeng, Haili Wang, Ping Jin, Fei Ma e Xue Zhou. "Identification and Characterization of the Very-Low-Density Lipoprotein Receptor Gene from Branchiostoma belcheri: Insights into the Origin and Evolution of the Low-Density Lipoprotein Receptor Gene Family". Animals 13, n.º 13 (4 de julho de 2023): 2193. http://dx.doi.org/10.3390/ani13132193.
Texto completo da fonteSasaki, Minoru, Yu Shimoyama, Yoshitoyo Kodama e Taichi Ishikawa. "Tryptophanyl tRNA Synthetase from Human Macrophages Infected by Porphyromonas gingivalis Induces a Proinflammatory Response Associated with Atherosclerosis". Pathogens 10, n.º 12 (20 de dezembro de 2021): 1648. http://dx.doi.org/10.3390/pathogens10121648.
Texto completo da fonteYe, Huadan, Qianlei Zhao, Yi Huang, Lingyan Wang, Haibo Liu, Chunming Wang, Dongjun Dai, Leiting Xu, Meng Ye e Shiwei Duan. "Meta-Analysis of Low Density Lipoprotein Receptor (LDLR) rs2228671 Polymorphism and Coronary Heart Disease". BioMed Research International 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/564940.
Texto completo da fonteMayne, Janice, Thilina Dewpura, Angela Raymond, Lise Bernier, Marion Cousins, Teik Chye Ooi, Jean Davignon, Nabil G. Seidah, Majambu Mbikay e Michel Chrétien. "Novel Loss-of-Function PCSK9 Variant Is Associated with Low Plasma LDL Cholesterol in a French-Canadian Family and with Impaired Processing and Secretion in Cell Culture". Clinical Chemistry 57, n.º 10 (1 de outubro de 2011): 1415–23. http://dx.doi.org/10.1373/clinchem.2011.165191.
Texto completo da fonteAli, Akhtar, Ros Whittall, Masroor Ellahi Babar, Tanveer Hussain e Steve E. Humphries. "Genetics of LDLR Gene in Pakistani Hypercholesterolemia Families". International Journal of Pharma Medicine and Biological Sciences 8, n.º 4 (outubro de 2019): 143–46. http://dx.doi.org/10.18178/ijpmbs.8.4.143-146.
Texto completo da fonteSilvestri, Laura, Flavia Guillem, Alessia Pagani, Antonella Nai, Claire Oudin, Muriel Silva, Fabienne Toutain et al. "Molecular mechanisms of the defective hepcidin inhibition in TMPRSS6 mutations associated with iron-refractory iron deficiency anemia". Blood 113, n.º 22 (28 de maio de 2009): 5605–8. http://dx.doi.org/10.1182/blood-2008-12-195594.
Texto completo da fonteLarrea-Sebal, Asier, Asier Benito-Vicente, José A. Fernandez-Higuero, Shifa Jebari-Benslaiman, Unai Galicia-Garcia, Kepa B. Uribe, Ana Cenarro et al. "MLb-LDLr". JACC: Basic to Translational Science 6, n.º 11 (novembro de 2021): 815–27. http://dx.doi.org/10.1016/j.jacbts.2021.08.009.
Texto completo da fonteBashir, Nabil. "Effects of Hinc II Polymorphism in the LDL Receptor Gene on Serum Lipid Levels of Jordanian Individuals with High Risk for Coronary Heart Disease". American Journal of Laboratory Medicine 9, n.º 5 (16 de dezembro de 2024): 58–63. https://doi.org/10.11648/j.ajlm.20240905.12.
Texto completo da fontePirmoradi, Leila, Nayer Seyfizadeh, Saeid Ghavami, Amir A. Zeki e Shahla Shojaei. "Targeting cholesterol metabolism in glioblastoma: a new therapeutic approach in cancer therapy". Journal of Investigative Medicine 67, n.º 4 (14 de fevereiro de 2019): 715–19. http://dx.doi.org/10.1136/jim-2018-000962.
Texto completo da fonteBovenschen, Niels, Koen Mertens, Lihui Hu, Louis M. Havekes e Bart J. M. van Vlijmen. "LDL receptor cooperates with LDL receptor–related protein in regulating plasma levels of coagulation factor VIII in vivo". Blood 106, n.º 3 (1 de agosto de 2005): 906–12. http://dx.doi.org/10.1182/blood-2004-11-4230.
Texto completo da fonteKang, Yuan-Lin, John Yochem, Leslie Bell, Erika B. Sorensen, Lihsia Chen e Sean D. Conner. "Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1". Molecular Biology of the Cell 24, n.º 3 (fevereiro de 2013): 308–18. http://dx.doi.org/10.1091/mbc.e12-02-0163.
Texto completo da fonteHuang, Yong, Ke Ning, Wen-Wen Li, Ge Lin, Cui-Lan Hou, Ming-Jie Wang e Yi-Chun Zhu. "Hydrogen sulfide accumulates LDL receptor precursor via downregulating PCSK9 in HepG2 cells". American Journal of Physiology-Cell Physiology 319, n.º 6 (1 de dezembro de 2020): C1082—C1096. http://dx.doi.org/10.1152/ajpcell.00244.2019.
Texto completo da fonteGuo, Tao, Liang Zhang, Dong Cheng, Tao Liu, Liguo An, Wei-Ping Li e Cong Zhang. "Low-density lipoprotein receptor affects the fertility of female mice". Reproduction, Fertility and Development 27, n.º 8 (2015): 1222. http://dx.doi.org/10.1071/rd13436.
Texto completo da fonteNgai, Ying Fai, Whitney L. Quong, Melissa B. Glier, Maria M. Glavas, Sandra L. Babich, Sheila M. Innis, Timothy J. Kieffer e William T. Gibson. "Ldlr−/− Mice Display Decreased Susceptibility to Western-Type Diet-Induced Obesity Due to Increased Thermogenesis". Endocrinology 151, n.º 11 (29 de setembro de 2010): 5226–36. http://dx.doi.org/10.1210/en.2010-0496.
Texto completo da fonteGurzeler, Erika, Anna-Kaisa Ruotsalainen, Anssi Laine, Teemu Valkama, Sanna Kettunen, Markku Laakso e Seppo Ylä-Herttuala. "SUR1-E1506K mutation impairs glucose tolerance and promotes vulnerable atherosclerotic plaque phenotype in hypercholesterolemic mice". PLOS ONE 16, n.º 11 (12 de novembro de 2021): e0258408. http://dx.doi.org/10.1371/journal.pone.0258408.
Texto completo da fonteJONG, Miek C., Ko WILLEMS Van DIJK, Vivian E. H. DAHLMANS, Hans Van Der BOOM, Kunisha KOBAYASHI, Kazuhito OKA, Gerard SIEST, Lawrence CHAN, Marten H. HOFKER e Louis M. HAVEKES. "Reversal of hyperlipidaemia in apolipoprotein C1 transgenic mice by adenovirus-mediated gene delivery of the low-density-lipoprotein receptor, but not by the very-low-density-lipoprotein receptor". Biochemical Journal 338, n.º 2 (22 de fevereiro de 1999): 281–87. http://dx.doi.org/10.1042/bj3380281.
Texto completo da fonteEslami, Seyyed Majid, Shekoufeh Nikfar, Maryam Ghasemi e Mohammad Abdollahi. "Does Evolocumab, as a PCSK9 Inhibitor, Ameliorate the Lipid Profile in Familial Hypercholesterolemia Patients? A Meta-Analysis of Randomized Controlled Trials". Journal of Pharmacy & Pharmaceutical Sciences 20 (11 de abril de 2017): 81. http://dx.doi.org/10.18433/j36c8n.
Texto completo da fonteMertens, Koen, Niels Bovenschen, Louis M. Havekes e Bart J. M. van Vlijmen. "Role of Low Density Lipoprotein Receptor in the Clearance of Coagulation Factor VIII In Vivo." Blood 104, n.º 11 (16 de novembro de 2004): 1925. http://dx.doi.org/10.1182/blood.v104.11.1925.1925.
Texto completo da fonteSrivastava, Rai Ajit K. "A Review of Progress on Targeting LDL Receptor-Dependent and -Independent Pathways for the Treatment of Hypercholesterolemia, a Major Risk Factor of ASCVD". Cells 12, n.º 12 (16 de junho de 2023): 1648. http://dx.doi.org/10.3390/cells12121648.
Texto completo da fonteDandan, Mohamad, Julia Han, Sabrina Mann, Rachael Kim, Hussein Mohammed, Edna Nyangau e Marc Hellerstein. "Turnover Rates of the Low-Density Lipoprotein Receptor and PCSK9: Added Dimension to the Cholesterol Homeostasis Model". Arteriosclerosis, Thrombosis, and Vascular Biology 41, n.º 12 (dezembro de 2021): 2866–76. http://dx.doi.org/10.1161/atvbaha.121.316764.
Texto completo da fonteChang, Wei-Chun, Hsiao-Ching Wang, Wei-Chung Cheng, Juan-Cheng Yang, Wei-Min Chung, Yen-Pin Ho, Lumin Chen, Yao-Ching Hung e Wen-Lung Ma. "LDLR-mediated lipidome–transcriptome reprogramming in cisplatin insensitivity". Endocrine-Related Cancer 27, n.º 2 (fevereiro de 2020): 81–95. http://dx.doi.org/10.1530/erc-19-0095.
Texto completo da fonteAl-Allaf, Faisal A., Zainularifeen Abduljaleel, Mohiuddin M. Taher, Ahmed A. H. Abdellatif, Mohammad Athar, Neda M. Bogari, Mohammed N. Al-Ahdal et al. "Molecular Dynamics Simulation Reveals Exposed Residues in the Ligand-Binding Domain of the Low-Density Lipoprotein Receptor that Interacts with Vesicular Stomatitis Virus-G Envelope". Viruses 11, n.º 11 (15 de novembro de 2019): 1063. http://dx.doi.org/10.3390/v11111063.
Texto completo da fonteCroston, Glenn E., Loribelle B. Milan, Keith B. Marschke, Melvin Reichman e Michael R. Briggs. "Androgen Receptor-Mediated Antagonism of Estrogen-Dependent Low Density Lipoprotein Receptor Transcription in Cultured Hepatocytes". Endocrinology 138, n.º 9 (1 de setembro de 1997): 3779–86. http://dx.doi.org/10.1210/endo.138.9.5404.
Texto completo da fonteBordicchia, Marica, Francesco Spannella, Gianna Ferretti, Tiziana Bacchetti, Arianna Vignini, Chiara Di Pentima, Laura Mazzanti e Riccardo Sarzani. "PCSK9 is Expressed in Human Visceral Adipose Tissue and Regulated by Insulin and Cardiac Natriuretic Peptides". International Journal of Molecular Sciences 20, n.º 2 (9 de janeiro de 2019): 245. http://dx.doi.org/10.3390/ijms20020245.
Texto completo da fonteRuotsalainen, Anna-Kaisa, Jari P. Lappalainen, Emmi Heiskanen, Mari Merentie, Virve Sihvola, Juha Näpänkangas, Line Lottonen-Raikaslehto et al. "Nuclear factor E2-related factor 2 deficiency impairs atherosclerotic lesion development but promotes features of plaque instability in hypercholesterolaemic mice". Cardiovascular Research 115, n.º 1 (18 de junho de 2018): 243–54. http://dx.doi.org/10.1093/cvr/cvy143.
Texto completo da fonteRanheim, Trine, Mari Ann Kulseth, Knut Erik Berge e Trond Paul Leren. "Model System for Phenotypic Characterization of Sequence Variations in the LDL Receptor Gene". Clinical Chemistry 52, n.º 8 (1 de agosto de 2006): 1469–79. http://dx.doi.org/10.1373/clinchem.2006.068627.
Texto completo da fonteHan, Maggie, Sarada Charugundla, Zeneng Wang, Satyesh SINHA, Zhiqiang Zhou, Hooman Allayee, Stanley Hazen, Aldons Lusis e Diana Shih. "Abstract 4141953: Genetic deficiency of flavin containing monooxygenase 3 ( Fmo3 ) lowers circulating trimethylamine N-oxide level and protects against atherosclerosis". Circulation 150, Suppl_1 (12 de novembro de 2024). http://dx.doi.org/10.1161/circ.150.suppl_1.4141953.
Texto completo da fonteHartman, Helen B., Douglas C. Harnish e Mark J. Evans. "Abstract 5521: Activation of Farnesoid X Receptor (FXR) Reduces Atherosclerosis in LDLRKO and apoEKO Mice". Circulation 118, suppl_18 (28 de outubro de 2008). http://dx.doi.org/10.1161/circ.118.suppl_18.s_566-c.
Texto completo da fonteLe May, Cedric, Jean Mathieu Berger, Bruno Pillot, Xavier Prieur, Eric Letessier, Xavier Collet, Anne Lespine, Bertrand Cariou e Philippe Costet. "Abstract 22: LDLR Promotes and PCSK9 Inhibits LDL-Derived Transintestinal Cholesterol Excretion". Arteriosclerosis, Thrombosis, and Vascular Biology 32, suppl_1 (maio de 2012). http://dx.doi.org/10.1161/atvb.32.suppl_1.a22.
Texto completo da fonteBi, Xin, Xuewei Zhu, Chuan Gao, Qiang Cao, Mingxia Liu, Swapnil Shewale, Elena Boudyguina, Martha Wilson e John Parks. "Abstract 49: Myeloid Cell Specific ABCA1 Deletion Does Not Significantly Accelerate Atherogenesis in LDL Receptor Knockout Mice". Arteriosclerosis, Thrombosis, and Vascular Biology 33, suppl_1 (maio de 2013). http://dx.doi.org/10.1161/atvb.33.suppl_1.a49.
Texto completo da fonte