Literatura científica selecionada sobre o tema "Lattice theory"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Lattice theory".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Lattice theory"
Day, Alan. "Doubling Constructions in Lattice Theory". Canadian Journal of Mathematics 44, n.º 2 (1 de abril de 1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.
Texto completo da fonteHarremoës, Peter. "Entropy Inequalities for Lattices". Entropy 20, n.º 10 (12 de outubro de 2018): 784. http://dx.doi.org/10.3390/e20100784.
Texto completo da fonteFlaut, Cristina, Dana Piciu e Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices". Axioms 13, n.º 4 (18 de abril de 2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Texto completo da fonteMcCulloch, Ryan. "Finite groups with a trivial Chermak–Delgado subgroup". Journal of Group Theory 21, n.º 3 (1 de maio de 2018): 449–61. http://dx.doi.org/10.1515/jgth-2017-0042.
Texto completo da fonteJežek, J., P. PudláK e J. Tůma. "On equational theories of semilattices with operators". Bulletin of the Australian Mathematical Society 42, n.º 1 (agosto de 1990): 57–70. http://dx.doi.org/10.1017/s0004972700028148.
Texto completo da fonteBallal, Sachin, e Vilas Kharat. "Zariski topology on lattice modules". Asian-European Journal of Mathematics 08, n.º 04 (17 de novembro de 2015): 1550066. http://dx.doi.org/10.1142/s1793557115500667.
Texto completo da fonteJežek, Jaroslav, e George F. McNulty. "The existence of finitely based lower covers for finitely based equational theories". Journal of Symbolic Logic 60, n.º 4 (dezembro de 1995): 1242–50. http://dx.doi.org/10.2307/2275885.
Texto completo da fonteFuta, Yuichi, e Yasunari Shidama. "Lattice of ℤ-module". Formalized Mathematics 24, n.º 1 (1 de março de 2016): 49–68. http://dx.doi.org/10.1515/forma-2016-0005.
Texto completo da fonteBronzan, J. B. "Hamiltonian lattice gauge theory: wavefunctions on large lattices". Nuclear Physics B - Proceedings Supplements 30 (março de 1993): 916–19. http://dx.doi.org/10.1016/0920-5632(93)90356-b.
Texto completo da fonteJANSEN, KARL. "LATTICE FIELD THEORY". International Journal of Modern Physics E 16, n.º 09 (outubro de 2007): 2638–79. http://dx.doi.org/10.1142/s0218301307008355.
Texto completo da fonteTeses / dissertações sobre o assunto "Lattice theory"
Race, David M. (David Michael). "Consistency in Lattices". Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc331688/.
Texto completo da fonteRadu, Ion. "Stone's representation theorem". CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3087.
Texto completo da fonteEndres, Michael G. "Topics in lattice field theory /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9713.
Texto completo da fonteBowman, K. "A lattice theory for algebras". Thesis, Lancaster University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234611.
Texto completo da fonteMichels, Amanda Therese. "Aspects of lattice gauge theory". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297217.
Texto completo da fonteBuckle, John Francis. "Computational aspects of lattice theory". Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/106446/.
Texto completo da fonteCraig, Andrew Philip Knott. "Lattice-valued uniform convergence spaces the case of enriched lattices". Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005225.
Texto completo da fontePugh, David John Rhydwyn. "Topological structures in lattice gauge theory". Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279896.
Texto completo da fonteSchaich, David. "Strong dynamics and lattice gauge theory". Thesis, Boston University, 2012. https://hdl.handle.net/2144/32057.
Texto completo da fonteIn this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ~ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses and other properties of the new particles predicted by these theories. I find S > 0.1 in the specific theories I study. Although this result still disagrees with experiment, it is much closer to the experimental value than is the conventional wisdom S > 0.3. These results encourage further lattice studies to search for experimentally viable strongly-interacting theories of EWSB.
Schenk, Stefan. "Density functional theory on a lattice". kostenfrei, 2009. http://d-nb.info/998385956/34.
Texto completo da fonteLivros sobre o assunto "Lattice theory"
Bunk, B., K. H. Mütter e K. Schilling, eds. Lattice Gauge Theory. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2231-3.
Texto completo da fonteGrätzer, George. General Lattice Theory. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9326-8.
Texto completo da fonteGrätzer, George. Lattice Theory: Foundation. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1.
Texto completo da fonteservice), SpringerLink (Online, ed. Lattice Theory: Foundation. Basel: Springer Basel AG, 2011.
Encontre o texto completo da fonteStern, Manfred. Semimodular lattices: Theory and applications. Cambridge: Cambridge University Press, 1999.
Encontre o texto completo da fonteKrätzel, Ekkehard. Lattice points. Dordrecht: Kluwer Academic Publishers, 1988.
Encontre o texto completo da fonteSatz, Helmut, Isabel Harrity e Jean Potvin, eds. Lattice Gauge Theory ’86. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2.
Texto completo da fonteSatz, H. Lattice Gauge Theory '86. Boston, MA: Springer US, 1987.
Encontre o texto completo da fonteH, Satz, Harrity Isabel, Potvin Jean, North Atlantic Treaty Organization. Scientific Affairs Division. e International Workshop "Lattice Gauge Theory 1986" (1986 : Brookhaven National Laboratory), eds. Lattice gauge theory '86. New York: Plenum Press, 1987.
Encontre o texto completo da fonteos, Paul Erd. Lattice points. Harlow: Longman Scientific & Technical, 1989.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Lattice theory"
Zheng, Zhiyong, Kun Tian e Fengxia Liu. "Random Lattice Theory". In Financial Mathematics and Fintech, 1–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_1.
Texto completo da fonteAl-Haj Baddar, Sherenaz W., e Kenneth E. Batcher. "Lattice Theory". In Designing Sorting Networks, 61–71. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1851-1_10.
Texto completo da fonteRitter, Gerhard X., e Gonzalo Urcid. "Lattice Theory". In Introduction to Lattice Algebra, 81–109. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003154242-3.
Texto completo da fonteYadav, Santosh Kumar. "Lattice Theory". In Discrete Mathematics with Graph Theory, 271–304. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21321-2_6.
Texto completo da fonteGrätzer, George. "Lattice Constructions". In Lattice Theory: Foundation, 255–306. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1_4.
Texto completo da fonteStone, Michael. "Lattice Field Theory". In Graduate Texts in Contemporary Physics, 185–200. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0507-4_15.
Texto completo da fonteYanagihara, Ryosuke. "Lattice Field Theory". In Springer Theses, 37–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6234-8_3.
Texto completo da fonteGrätzer, George. "First Concepts". In General Lattice Theory, 1–77. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_1.
Texto completo da fonteGrätzer, George. "Distributive Lattices". In General Lattice Theory, 79–168. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_2.
Texto completo da fonteGrätzer, George. "Congruences and Ideals". In General Lattice Theory, 169–210. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Lattice theory"
Monahan, Christopher. "Automated Lattice Perturbation Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0021.
Texto completo da fonteLambrou, Eliana, Luigi Del Debbio, R. D. Kenway e Enrico Rinaldi. "Searching for a continuum 4D field theory arising from a 5D non-abelian gauge theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0107.
Texto completo da fonteBursa, F., e Michael Kroyter. "Lattice String Field Theory". In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0047.
Texto completo da fonteKieburg, Mario, Jacobus Verbaarschot e Savvas Zafeiropoulos. "A classification of 2-dim Lattice Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0337.
Texto completo da fonteShao, Yingchao, Li Fu, Fei Hao e Keyun Qin. "Rough Lattice: A Combination with the Lattice Theory and the Rough Set Theory". In 2016 International Conference on Mechatronics, Control and Automation Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mcae-16.2016.23.
Texto completo da fonteBietenholz, Wolfgang, Ivan Hip e David Landa-Marban. "Spectral Properties of a 2d IR Conformal Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0486.
Texto completo da fonteZubkov, Mikhail. "Gauge theory of Lorentz group on the lattice". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0095.
Texto completo da fonteVeernala, Aarti, e Simon Catterall. "Four Fermion Interactions in Non Abelian Gauge Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0108.
Texto completo da fonteBergner, Georg, Jens Langelage e Owe Philipsen. "Effective lattice theory for finite temperature Yang Mills". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0133.
Texto completo da fonteHesse, Dirk, Stefan Sint, Francesco Di Renzo, Mattia Dalla Brida e Michele Brambilla. "The Schrödinger Functional in Numerical Stochastic Perturbation Theory". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0325.
Texto completo da fonteRelatórios de organizações sobre o assunto "Lattice theory"
McCune, W., e R. Padmanabhan. Single identities for lattice theory and for weakly associative lattices. Office of Scientific and Technical Information (OSTI), março de 1995. http://dx.doi.org/10.2172/510566.
Texto completo da fonteYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), junho de 1992. http://dx.doi.org/10.2172/10156563.
Texto completo da fonteYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), junho de 1992. http://dx.doi.org/10.2172/5082303.
Texto completo da fonteBecher, Thomas G. Continuum methods in lattice perturbation theory. Office of Scientific and Technical Information (OSTI), novembro de 2002. http://dx.doi.org/10.2172/808671.
Texto completo da fonteHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), janeiro de 1993. http://dx.doi.org/10.2172/6441616.
Texto completo da fonteHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), janeiro de 1993. http://dx.doi.org/10.2172/6590163.
Texto completo da fonteBrower, Richard C. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), abril de 2014. http://dx.doi.org/10.2172/1127446.
Texto completo da fonteNegele, John W. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), junho de 2012. http://dx.doi.org/10.2172/1165874.
Texto completo da fonteReed, Daniel, A. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), maio de 2008. http://dx.doi.org/10.2172/951263.
Texto completo da fonteCreutz, M. Lattice gauge theory and Monte Carlo methods. Office of Scientific and Technical Information (OSTI), novembro de 1988. http://dx.doi.org/10.2172/6530895.
Texto completo da fonte