Artigos de revistas sobre o tema "Lasers à pompage diode"

Siga este link para ver outros tipos de publicações sobre o tema: Lasers à pompage diode.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Lasers à pompage diode".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Alfianda, Alfianda, Muhammad Amin e Risnawati Risnawati. "Perancangan Pengisian Pada Dispenser Dengan Memanfaatkan Sensor Dan Embedded System". J-Com (Journal of Computer) 1, n.º 2 (31 de julho de 2021): 147–52. http://dx.doi.org/10.33330/j-com.v2i1.1246.

Texto completo da fonte
Resumo:
Abstract: Nowadays, almost all of them use a dispenser, because of its practicality. But behind that there are several things that make the dispenser less efficient when taking drinking water from the glass, because the user has to press or turn the water tap in the dispenser. The working system of this tool is where the machine will run according to the commands obtained from the laser diode and the LDR sensor, the laser diode will reflect light that leads to the LDR. when the light reflected by the laser diode to the LDR is cut, it can be interpreted that the LDR and the laser diode detect or read the presence of an object in the form of a glass, automatically the two sensors instruct the controller to activate the water pump and the water pump will work to remove the water which will be filled in the glass that is placed in the dispenser with the volume of the glass used, the filling process and the end of filling will be displayed by the LCD and when filling the water the glass is full there will be a warning from the buzzer in the form of a sound. Users no longer need to press or turn the water tap when taking water from the dispenser using a glass. Keywords: Dispensers;LDR Sensor;Diode Laser and Tools Abstrak: Pada saat ini masyarakat sekarang sudah hampir semuanya menggunakan dispenser, karena kepraktisan. Namun dibalik itu semua ada beberapa hal yang membuat dispenser kurang efisien saat mengambil air minum pada gelas, karena pengguna harus menekan atau memutar keran air yang ada pada dispenser. Sistem kerja dari alat ini ialah dimana mesin akan berjalan sesuai dengan perintah yang didapat dari Dioda laser dan sensor LDR, Dioda laser akan memantulkan cahaya yang mengarah pada LDR, pada saat cahaya yang dipantulkan Dioda laser ke LDR terpotong maka dapat diartikan LDR dan Dioda laser mendeteksi atau membaca adanya benda berupa gelas, secara otomatis kedua sensor tersebut memerintahkan controller mengaktifkan pompa air dan pompa air akan bekerja mengeluarkan air yang akan diisikan pada gelas yang diletakkan pada dispenser dengan volume gelas yang digunakan, proses pengisian dan akhir pengisian akan ditampilkan oleh LCD dan saat pengisian air pada gelas penuh akan ada peringatan dari buzzer berupa bunyi. Pengguna tidak perlu lagi menekan atau memutar keran air saat mengambil air pada dispenser menggunakan gelas. Kata Kunci : Dispenser;Sensor LDR;Dioda Laser dan Alat
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Baumann, Melissa G. D., John C. Wright, Arthur B. Ellis, Thomas Kuech e George C. Lisensky. "Diode lasers". Journal of Chemical Education 69, n.º 2 (fevereiro de 1992): 89. http://dx.doi.org/10.1021/ed069p89.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Guillemot, Lauren, Pavel Loiko, Alain Braud, Thomas Godin, Ammar Hideur e Patrice Camy. "Les lasers thulium à 2300 NM : Avancées et perspectives". Photoniques, n.º 109 (julho de 2021): 35–39. http://dx.doi.org/10.1051/photon/202110935.

Texto completo da fonte
Resumo:
Cet article dresse un état des lieux des dernières avancées dans le domaine des lasers dopés aux ions thulium émettant dans le proche infrarouge autour de 2.3 μm. Il présente les verrous liés à l’oscillation laser de l’ion thulium sur la transition 3H4 → 3H5 et les solutions prometteuses envisagees pour les contourner en s’appuyant notamment sur un mécanisme de pompage par upconversion particulièrement efficace dans certains matériaux.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

MANNI, JEFF. "Surgical Diode Lasers". Journal of Clinical Laser Medicine & Surgery 10, n.º 5 (outubro de 1992): 377–80. http://dx.doi.org/10.1089/clm.1992.10.377.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Vasil’ev, Peter. "Ultrafast Diode Lasers". Optical Engineering 35, n.º 8 (1 de agosto de 1996): 2439. http://dx.doi.org/10.1117/1.600817.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Johnson, Noble M., Arto V. Nurmikko e Steven P. DenBaars. "Blue Diode Lasers". Physics Today 53, n.º 10 (outubro de 2000): 31–36. http://dx.doi.org/10.1063/1.1325190.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Aubert, J. J., Ch Wyon, A. Cassimi, V. Hardy e J. Hamel. "UN laser solide accordable pompe par diode". Optics Communications 69, n.º 3-4 (janeiro de 1989): 299–302. http://dx.doi.org/10.1016/0030-4018(89)90120-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Voropai, E. S., K. F. Ermalitskaia, F. A. Ermalitski, A. E. Rad’ko, N. V. Rzheutsky e M. P. Samtsov. "COMPACT PICOSECOND DIODE LASERS". Instruments and Experimental Techniques 65, n.º 1 (fevereiro de 2022): 83–88. http://dx.doi.org/10.1134/s0020441222010213.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Lozes-Dupuy, F., S. Bonnefont e H. Martinot. "Surface emitting diode lasers". Journal de Physique III 4, n.º 12 (dezembro de 1994): 2379–89. http://dx.doi.org/10.1051/jp3:1994284.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Hohimer, J. P., G. A. Vawter, D. C. Craft e G. R. Hadley. "Interferometric ring diode lasers". Applied Physics Letters 61, n.º 12 (21 de setembro de 1992): 1375–77. http://dx.doi.org/10.1063/1.107542.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Coldren, L. A. "Monolithic tunable diode lasers". IEEE Journal of Selected Topics in Quantum Electronics 6, n.º 6 (novembro de 2000): 988–99. http://dx.doi.org/10.1109/2944.902147.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Wenzel, Hans, Bernd Sumpf e Götz Erbert. "High-brightness diode lasers". Comptes Rendus Physique 4, n.º 6 (julho de 2003): 649–61. http://dx.doi.org/10.1016/s1631-0705(03)00074-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Moriarty, A. P. "Diode lasers in ophthalmology". International Ophthalmology 17, n.º 6 (1994): 297–304. http://dx.doi.org/10.1007/bf00915734.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Neumark, Gertrude F., Robert M. Park e James M. Depuydt. "Blue‐Green Diode Lasers". Physics Today 47, n.º 6 (junho de 1994): 26–32. http://dx.doi.org/10.1063/1.881438.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Abou-Zeid, A. "Diode lasers for interferometry". Precision Engineering 11, n.º 3 (julho de 1989): 139–44. http://dx.doi.org/10.1016/0141-6359(89)90068-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Fibrich, M., H. Jelínková, J. Šulc, K. Nejezchleb e V. Škoda. "Diode-pumped Pr:YAP lasers". Laser Physics Letters 8, n.º 8 (1 de junho de 2011): 559–68. http://dx.doi.org/10.1002/lapl.201110025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Yokoyama, Hiroyuki, Takanori Shimizu, Takashi Ono e Yutaka Yano. "Synchronous Injection Locking Operation of Monolithic Diode Lasers Mode-Locked Diode Lasers". Optical Review 2, n.º 2 (maio de 1995): 85–88. http://dx.doi.org/10.1007/s10043-995-0085-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Zhang, Linyu, Xuan Li, Wei Luo, Junce Shi, Kangxun Sun, Meiye Qiu, Zhaoxuan Zheng et al. "Review of 1.55 μm Waveband Integrated External Cavity Tunable Diode Lasers". Photonics 10, n.º 11 (20 de novembro de 2023): 1287. http://dx.doi.org/10.3390/photonics10111287.

Texto completo da fonte
Resumo:
The 1.55 μm waveband integrated external cavity tunable diode lasers have excellent merits such as their small volume, low cost, low power consumption, wide tuning range, narrow linewidth, large side mode suppression ratio, and high output power. These merits have attracted many applications for the lasers, such as in wavelength division multiplexing, passive optical networks, mobile backhaul, and spectral sensing technology. In this paper, firstly, the basic structure and principle of integrated external cavity tunable diode lasers are introduced, and then two main integrated structures of 1.55 μm waveband external cavity tunable diode lasers are reviewed and compared in detail, namely the hybrid integrated structure and monolithic integrated structure of 1.55 μm waveband integrated external cavity tunable diode lasers. Finally, the research progress in 1.55 μm waveband integrated external cavity tunable diode lasers in the last decade are summarised, and the advantages and disadvantages of 1.55 μm waveband integrated external cavity tunable diode lasers are analysed. The results show that, with the transformation of optical communication into more complex modulation formats, it is necessary to integrate miniature 1.55 μm waveband external cavity tunable diode lasers. Low-cost integrated 1.55 μm waveband external cavity tunable diode lasers are expected to be used in the next generation of optical transceivers in small-factor modules.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Kher, Udatta. "Diode Lasers: The Cutting Edge". International Journal of Laser Dentistry 1, n.º 1 (2011): 49–53. http://dx.doi.org/10.5005/jp-journals-10022-1008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Tino, G. M. "Atomic spectroscopy with diode lasers". Physica Scripta T51 (1 de janeiro de 1994): 58–66. http://dx.doi.org/10.1088/0031-8949/1994/t51/008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Hadley, G. "Injection locking of diode lasers". IEEE Journal of Quantum Electronics 22, n.º 3 (março de 1986): 419–26. http://dx.doi.org/10.1109/jqe.1986.1072979.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Whitehead, D. G., A. V. Polijanczuk e P. M. Beckett. "Semiconductor Diode Lasers for Soldering". Microelectronics International 9, n.º 2 (fevereiro de 1992): 4–5. http://dx.doi.org/10.1108/eb044566.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Bijlani, Bhavin J., e Amr S. Helmy. "Bragg reflection waveguide diode lasers". Optics Letters 34, n.º 23 (30 de novembro de 2009): 3734. http://dx.doi.org/10.1364/ol.34.003734.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Yanovsky, V. P., A. Korytin, F. W. Wise, A. Cassanho e H. P. Jenssen. "Femtosecond diode-pumped Cr:LiSGAF lasers". IEEE Journal of Selected Topics in Quantum Electronics 2, n.º 3 (1996): 465–72. http://dx.doi.org/10.1109/2944.571745.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Imasaka, T. "Diode lasers in analytical chemistry". Talanta 48, n.º 2 (fevereiro de 1999): 305–20. http://dx.doi.org/10.1016/s0039-9140(98)00244-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Bowman, S. R., S. O’Connor e N. J. Condon. "Diode pumped yellow dysprosium lasers". Optics Express 20, n.º 12 (23 de maio de 2012): 12906. http://dx.doi.org/10.1364/oe.20.012906.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Malcolm, G. P. A., e A. I. Ferguson. "Diode-pumped solid-state lasers". Contemporary Physics 32, n.º 5 (setembro de 1991): 305–19. http://dx.doi.org/10.1080/00107519108223704.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

TÖNSHOFF, H. K., A. BERNDT, M. STÜRMER, D. GOLLA e J. SCHUMACHER. "Diode lasers for material processing". Le Journal de Physique IV 04, n.º C4 (abril de 1994): C4–59—C4–63. http://dx.doi.org/10.1051/jp4:1994411.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

YU, J. "Diode-lasers : développements et applications". Le Journal de Physique IV 04, n.º C4 (abril de 1994): C4–610—C4–610. http://dx.doi.org/10.1051/jp4:19944160.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Yang, Yonfeng, B. K. Garside e P. E. Jessop. "Heterolayer lead-salt diode lasers". Canadian Journal of Physics 65, n.º 8 (1 de agosto de 1987): 999–1002. http://dx.doi.org/10.1139/p87-160.

Texto completo da fonte
Resumo:
Hot-wall epitaxy (HWE) has been used to grow heterostructure lead-salt materials from which low-threshold tunable diode lasers have been made. A new HWE structure consisting of a Pb(Se, Te) layer sandwiched between two lattice-matched (Pb, Sn)Te layers has resulted in lasers of good electrical and material quality, and threshold current densities as low as 200 A∙cm−2 (at 40 K). This occurred even though this structure is expected to be nonconfining to both light and electrical carriers. This result is due to the very rapid interdiffusion of dopant atoms between the epilayers during the growth process. Dopant interdiffusion has been investigated using an etch-back technique combined with hot-point probe measurements to observe changes in the doping profiles of the structures. Very large values for the diffusion constants of dopants have been deduced from these measurements: 2.3 × 10−15 and 1.1 × 10−15 cm2∙s−1 for Bi and Tl, respectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Ripley, P. M. "The physics of diode lasers". Lasers In Medical Science 11, n.º 2 (junho de 1996): 71–78. http://dx.doi.org/10.1007/bf02133204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Luft, Axel, e Tobias Stittgen. "Diode Lasers and Remote Welding". Laser Technik Journal 11, n.º 5 (novembro de 2014): 32–35. http://dx.doi.org/10.1002/latj.201400052.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Molitor, Thomas. "Thermal Spraying with Diode Lasers". Laser Technik Journal 14, n.º 3 (junho de 2017): 53–55. http://dx.doi.org/10.1002/latj.201700016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

KOHL, MARTIN. "Tiny Lasers: Diode Lasers for Portable Miniaturized Diagnostic Tools". Journal of Clinical Laser Medicine & Surgery 13, n.º 2 (abril de 1995): 111–12. http://dx.doi.org/10.1089/clm.1995.13.111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Henini, Mohamed. "A new breed of diode lasers: Surface emitting lasers". III-Vs Review 9, n.º 4 (agosto de 1996): 37–41. http://dx.doi.org/10.1016/s0961-1290(96)80235-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Puska, Päivi, e Ahti Tarkkanen. "Therapy-resistant Inflammatory Glaucoma – 647nm Krypton and 670nm Diode Lasers for Transscleral Contact Cyclophotocoagulation". European Ophthalmic Review 03, n.º 01 (2009): 29. http://dx.doi.org/10.17925/eor.2009.03.01.29.

Texto completo da fonte
Resumo:
Only a few reports exist on the treatment of therapy-resistant inflammatory glaucoma with contact transscleral cyclophotocoagulation (CPC), and only one in which the red 647nm krypton or 670nm diode lasers are used. The lasers most frequently employed in clinical practice are the 810nm diode and the 1,064nm neodynium:yttrium–aluminium–garnet (Nd:YAG) lasers. Although transmission through the sclera is lower with the red 647nm krypton and 670nm diode lasers than with the infrared 810nm diode and Nd:YAG lasers, this is compensated for by using contact application and compressing the sclera with the probe. Also, the red lasers have a higher affinity for the pigment epithelium of the pars plicata. Transscleral red laser CPC has proved to be an effective, simple and well tolerated procedure for the treatment of therapy-resistant inflammatory glaucoma, particularly in adults.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

DONETSKY, D. V., R. U. MARTINELLI e G. L. BELENKY. "MID-INFRARED GaSb-BASED LASERS WITH TYPE-I HETEROINTERFACES". International Journal of High Speed Electronics and Systems 12, n.º 04 (dezembro de 2002): 1025–38. http://dx.doi.org/10.1142/s0129156402001903.

Texto completo da fonte
Resumo:
The design of room-temperature, InGaAsSb/AlGaAsSb diode lasers has evolved from the first double-heterojunction lasers described in 1980 that operated in the pulsed-current mode to present-day continuous–wave (CW), high-power, quantum–well diode lasers. We discuss in detail recent results from type-I-heterostructure, GaSb-based CW room-temperature diode lasers. The devices operate within the wavelength range of 1.8 to 2.7 μm, providing output powers up to several Watts. We analyze the factors limiting device performance.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Nadezhdinskii, A. I., e Ya Ya Ponurovskii. "Quantum noise of diode laser radiation". Laser Physics 33, n.º 5 (16 de março de 2023): 055001. http://dx.doi.org/10.1088/1555-6611/acc23d.

Texto completo da fonte
Resumo:
Abstract Semiconductors lasers from several manufacturers have been investigated. Rate equations were proposed to describe the dynamics and explain the mechanisms of the appearance of quantum noise in diode lasers. Stationary solutions of the rate equations were obtained. For the lasers under study, the threshold currents and the number of photons at the threshold are obtained. Four mechanisms of the quantum noises appearance were described: Poisson noises of the photons, Poisson noises of the electrons, shot noises of the pump current, and quantum noise of the radiation field. The photon lifetimes for the investigated diode lasers have been determined. The shot noise of the pumping current does not play a significant role. The Poisson noise of photons is responsible for the maximum noise at the generation threshold of a diode laser. The analysis of quantum noises of quantum-cascade diode lasers is carried out.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Brown, Calum M., Daisy K. E. Dickinson e Philip J. W. Hands. "Diode pumping of liquid crystal lasers". Optics & Laser Technology 140 (agosto de 2021): 107080. http://dx.doi.org/10.1016/j.optlastec.2021.107080.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Beyer, T., e M. Tacke. "Antireflection coatings for PbSe diode lasers". Applied Physics Letters 73, n.º 9 (31 de agosto de 1998): 1191–93. http://dx.doi.org/10.1063/1.122368.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Scheps, Richard. "Efficient laser diode pumped Nd lasers". Applied Optics 28, n.º 1 (1 de janeiro de 1989): 89. http://dx.doi.org/10.1364/ao.28.000089.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Hardy, Amos, e William Streifer. "Analysis of phased-array diode lasers". Optics Letters 10, n.º 7 (1 de julho de 1985): 335. http://dx.doi.org/10.1364/ol.10.000335.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Watts, R. N., e C. E. Wieman. "Manipulating atomic velocities using diode lasers". Optics Letters 11, n.º 5 (1 de maio de 1986): 291. http://dx.doi.org/10.1364/ol.11.000291.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

SHAN, Xiaonan, Chao CHEN, Xingkai LANG, Yongyi CHEN, Yubing WANG, Peng JIA, Lijun WANG, Yongqiang NING, Li QIN e Lei LIANG. "Advances in narrow linewidth diode lasers". SCIENTIA SINICA Informationis 49, n.º 6 (1 de junho de 2019): 649–62. http://dx.doi.org/10.1360/n112018-00345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

SUN Sheng-ming, 孙胜明, 范. 杰. FAN Jie, 徐. 莉. XU Li, 邹永刚 ZOU Yong-gang, 杨晶晶 YANG Jing-jing e 龚春阳 GONG Chun-yang. "Progress of tapered semiconductor diode lasers". Chinese Optics 12, n.º 1 (2019): 48–58. http://dx.doi.org/10.3788/co.20191201.0048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Coldren, Larry A. "Diode Lasers and Photonic Integrated Circuits". Optical Engineering 36, n.º 2 (1 de fevereiro de 1997): 616. http://dx.doi.org/10.1117/1.601191.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Alcock, A. J., e J. E. Bernard. "Diode-pumped grazing incidence slab lasers". IEEE Journal of Selected Topics in Quantum Electronics 3, n.º 1 (1997): 3–8. http://dx.doi.org/10.1109/2944.585806.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Jackson, S. D., M. Pollnau e Jianfeng Li. "Diode Pumped Erbium Cascade Fiber Lasers". IEEE Journal of Quantum Electronics 47, n.º 4 (abril de 2011): 471–78. http://dx.doi.org/10.1109/jqe.2010.2091256.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Won, Rachel. "The bio-mission of diode lasers". Nature Photonics 9, n.º 12 (27 de novembro de 2015): 786–87. http://dx.doi.org/10.1038/nphoton.2015.237.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Hughes, D. W., e J. R. M. Barr. "Laser diode pumped solid state lasers". Journal of Physics D: Applied Physics 25, n.º 4 (14 de abril de 1992): 563–86. http://dx.doi.org/10.1088/0022-3727/25/4/001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia