Artigos de revistas sobre o tema "Laser communication systems"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Laser communication systems".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ke, Qiang. "Numerical Simulation of Chaotic Laser Secure Communication". Advanced Materials Research 798-799 (setembro de 2013): 570–73. http://dx.doi.org/10.4028/www.scientific.net/amr.798-799.570.
Texto completo da fontePengyuan Chang, Pengyuan Chang, Tiantian Shi Tiantian Shi, Shengnan Zhang Shengnan Zhang, Haosen Shang Haosen Shang, Duo Pan Duo Pan e Jingbiao Chen Jingbiao Chen. "Faraday laser at Rb 1529 nm transition for optical communication systems". Chinese Optics Letters 15, n.º 12 (2017): 121401. http://dx.doi.org/10.3788/col201715.121401.
Texto completo da fonteZeng Fengjiao, 曾凤娇, 杨康建 Yang Kangjian, 晏旭 Yan Xu, 赵孟孟 Zhao Mengmeng, 杨平 Yang Ping e 文良华 Wen Lianghua. "Research Progress on Underwater Laser Communication Systems". Laser & Optoelectronics Progress 58, n.º 3 (2021): 0300002–30000226. http://dx.doi.org/10.3788/lop202158.0300002.
Texto completo da fonteCai, Chengkun, e Jian Wang. "Femtosecond Laser-Fabricated Photonic Chips for Optical Communications: A Review". Micromachines 13, n.º 4 (16 de abril de 2022): 630. http://dx.doi.org/10.3390/mi13040630.
Texto completo da fonteStrakhov, S. Yu, A. V. Trilis e N. V. Sotnikova. "Specifics of transmitting telescopes for laser communication systems". Journal of Optical Technology 88, n.º 5 (1 de maio de 2021): 264. http://dx.doi.org/10.1364/jot.88.000264.
Texto completo da fonteGiuliano, Giovanni, Leslie Laycock, Duncan Rowe e Anthony E. Kelly. "Solar rejection in laser based underwater communication systems". Optics Express 25, n.º 26 (20 de dezembro de 2017): 33066. http://dx.doi.org/10.1364/oe.25.033066.
Texto completo da fonteMoatlhodi, Ogomoditse O., Nonofo M. J. Ditshego e Ravi Samikannu. "Vertical Cavity Surface Emitting Lasers as Sources for Optical Communication Systems: A Review". Journal of Nano Research 65 (dezembro de 2020): 51–96. http://dx.doi.org/10.4028/www.scientific.net/jnanor.65.51.
Texto completo da fonteNiu, Shen, Yue Song, Ligong Zhang, Yongyi Chen, Lei Liang, Ye Wang, Li Qin et al. "Research Progress of Monolithic Integrated DFB Laser Arrays for Optical Communication". Crystals 12, n.º 7 (21 de julho de 2022): 1006. http://dx.doi.org/10.3390/cryst12071006.
Texto completo da fonteDmytryszyn, Mark, Matthew Crook e Timothy Sands. "Preparing for Satellite Laser Uplinks and Downlinks". Sci 2, n.º 1 (18 de março de 2020): 16. http://dx.doi.org/10.3390/sci2010016.
Texto completo da fonteLaksono, Pranoto Budi. "A STUDY OF THE INFLUENCE OF 650 nm LASER INTERFERENCE ON VISIBLE LASER LIGHT COMMUNICATION SYSTEM". TEKNOKOM 4, n.º 2 (1 de setembro de 2021): 60–65. http://dx.doi.org/10.31943/teknokom.v4i2.66.
Texto completo da fonteVANWIGGEREN, GREGORY D., e RAJARSHI ROY. "CHAOTIC COMMUNICATION USING TIME-DELAYED OPTICAL SYSTEMS". International Journal of Bifurcation and Chaos 09, n.º 11 (novembro de 1999): 2129–56. http://dx.doi.org/10.1142/s0218127499001565.
Texto completo da fonteFuhr, P. L. "Laser Diode Polarization Beam Combiners In Optical Communication Systems". Optical Engineering 25, n.º 2 (1 de fevereiro de 1986): 252309. http://dx.doi.org/10.1117/12.7973821.
Texto completo da fonteJacob, J. M., E. A. Golovchenko e G. M. Carter. "Phase modulated pulsed laser for WDM soliton communication systems". Electronics Letters 33, n.º 6 (1997): 515. http://dx.doi.org/10.1049/el:19970292.
Texto completo da fonteBaskakova, A. V., S. N. Kuznetsov e S. E. Shirobakin. "Design of athermal optical systems for wireless laser communication". Lasers. Measurements. Information 2, n.º 3 (2022): 9–19. http://dx.doi.org/10.51639/2713-0568_2022_2_3_9.
Texto completo da fonteHu, Hao, e Leif K. Oxenløwe. "Chip-based optical frequency combs for high-capacity optical communications". Nanophotonics 10, n.º 5 (3 de fevereiro de 2021): 1367–85. http://dx.doi.org/10.1515/nanoph-2020-0561.
Texto completo da fonteBielawski, Radosław, e Aleksandra Radomska. "NASA Space Laser Communications System". Safety & Defense 6, n.º 2 (2 de novembro de 2020): 51–62. http://dx.doi.org/10.37105/sd.85.
Texto completo da fonteKim, Geuk-Nam, Sang-Young Park, Sehyun Seong, Jae-Young Choi, Sang-Kook Han, Young-Eon Kim, Suyong Choi et al. "Design of Novel Laser Crosslink Systems Using Nanosatellites in Formation Flying: The VISION". Aerospace 9, n.º 8 (3 de agosto de 2022): 423. http://dx.doi.org/10.3390/aerospace9080423.
Texto completo da fonteDmytryszyn, Mark, Matthew Crook e Timothy Sands. "Lasers for Satellite Uplinks and Downlinks". Sci 2, n.º 2 (12 de junho de 2020): 44. http://dx.doi.org/10.3390/sci2020044.
Texto completo da fonteDmytryszyn, Mark, Matthew Crook e Timothy Sands. "Lasers for Satellite Uplinks and Downlinks". Sci 2, n.º 3 (9 de setembro de 2020): 71. http://dx.doi.org/10.3390/sci2030071.
Texto completo da fonteDmytryszyn, Mark, Matthew Crook e Timothy Sands. "Lasers for Satellite Uplinks and Downlinks". Sci 3, n.º 1 (4 de janeiro de 2021): 4. http://dx.doi.org/10.3390/sci3010004.
Texto completo da fonteDammacco, Giada, Dirk Wenzel e Christian Hennigs. "Prosys-Laser: Smart Laser Protective Textile Systems". Advances in Science and Technology 80 (setembro de 2012): 156–62. http://dx.doi.org/10.4028/www.scientific.net/ast.80.156.
Texto completo da fonteZhou, Li. "Optical System in Laser Inter-Satellites Communication". Advanced Materials Research 945-949 (junho de 2014): 2213–16. http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.2213.
Texto completo da fonteAbramova, Evgenia S., Vyacheslav F. Myshkin, Valery A. Khan, Sergey F. Balandin, Roman S. Eremeev, Maria S. Pavlova e Dmitry M. Horohorin. "ON THE USE OF BISTATIC UNDERWATER OPTICAL COMMUNICATION SYSTEMS". T-Comm 14, n.º 8 (2020): 4–12. http://dx.doi.org/10.36724/2072-8735-2020-14-8-4-12.
Texto completo da fonteShi-Jie, GAO, WU Jia-Bin, LIU Yong-Kai, MA Shuang, NIU Yan-Jun e YANG Hui-sheng. "Development status and trend of micro-satellite laser communication systems". Chinese Optics 13, n.º 6 (2020): 1–11. http://dx.doi.org/10.37188/co.2020-0033.
Texto completo da fonteLu hongqiang, 陆红强, 赵卫 Zhaowei, 胡辉 Wangwei, 汪伟 Huhui e 谢小平 Xie xiaoping. "The Effects of beam misalignment on space laser communication systems". High Power Laser and Particle Beams 23, n.º 4 (2011): 895–900. http://dx.doi.org/10.3788/hplpb20112304.0895.
Texto completo da fonteTascillo, Mark A. "Adaptive jitter rejection technique applicable to airborne laser communication systems". Optical Engineering 34, n.º 5 (1 de maio de 1995): 1263. http://dx.doi.org/10.1117/12.201638.
Texto completo da fonteHoang, Thang Manh, Sanjay K. Palit, Sayan Mukherjee e Santo Banerjee. "Synchronization and secure communication in time delayed semiconductor laser systems". Optik 127, n.º 22 (novembro de 2016): 10930–47. http://dx.doi.org/10.1016/j.ijleo.2016.08.105.
Texto completo da fonteTang, Ming Hui, Mi Li, Yan Li, Jia Chen Ding e Guo Liang Xu. "Investigation of the Performance of OOK, 2DPSK, QDPSK in Downlink of Ground-to-Satellite Laser Communication Systems". Applied Mechanics and Materials 411-414 (setembro de 2013): 749–52. http://dx.doi.org/10.4028/www.scientific.net/amm.411-414.749.
Texto completo da fonteZhai, Xu Hua, e Hong Tao Zhang. "Compensation Experiment Analysis of Adaptive Optical System in Space Laser Communication". Advanced Materials Research 201-203 (fevereiro de 2011): 491–94. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.491.
Texto completo da fontePeng, P. C., K. C. Shiu, Y. M. Chen, M. A. Bitew, W. Y. Lee, C. H. Lai e Y. W. Peng. "Multiwavelength Laser Module Based on Distribute Feedback Laser Diode for Broadcast and Communication Systems". IEEE Photonics Journal 8, n.º 4 (agosto de 2016): 1–8. http://dx.doi.org/10.1109/jphot.2016.2591440.
Texto completo da fonteKarpathakis, Skevos F. E., Benjamin P. Dix-Matthews, Shane M. Walsh, Ayden S. McCann, David R. Gozzard, Alex M. Frost, Charles T. Gravestock e Sascha W. Schediwy. "Ground-to-Drone Optical Pulse Position Modulation Demonstration as a Testbed for Lunar Communications". Drones 7, n.º 2 (31 de janeiro de 2023): 99. http://dx.doi.org/10.3390/drones7020099.
Texto completo da fonteVilcane, K., S. Matsenko, M. Parfjonovs, R. Murnieks, M. Aleksejeva e S. Spolitis. "Implementation of Multi-Wavelength Source for DWDM-PON Fiber Optical Transmission Systems". Latvian Journal of Physics and Technical Sciences 57, n.º 4 (1 de agosto de 2020): 24–33. http://dx.doi.org/10.2478/lpts-2020-0019.
Texto completo da fonteHSU, H., T. N. LI, E. Z. YANG, J. L. YU, J. LÜ, YUE XU e YAN GAO. "EFFECT OF PHONONS IN STIMULATED BRILLOUIN SCATTERING ON OPTICAL FIBER COMMUNICATION". Journal of Nonlinear Optical Physics & Materials 14, n.º 01 (março de 2005): 1–8. http://dx.doi.org/10.1142/s0218863505002463.
Texto completo da fonteLi, Xiang Yang, e Zong Feng Ma. "Hybrid Laser/Microwave Wireless Communication System for Fractionated Cluster Spacecraft". Applied Mechanics and Materials 651-653 (setembro de 2014): 2036–39. http://dx.doi.org/10.4028/www.scientific.net/amm.651-653.2036.
Texto completo da fonteARAKI, Ken-ichi, e Yoji FURUHAMA. "Optical Beam Tracking/Pointing Stability in Free-Space Laser Communication Systems." Review of Laser Engineering 19, n.º 6 (1991): 538–43. http://dx.doi.org/10.2184/lsj.19.6_538.
Texto completo da fonteRibeiro, R. F. S., F. Da Rocha e A. V. T. Cartaxo. "Influence of laser phase noise on dispersive optical fiber communication systems". IEEE Photonics Technology Letters 7, n.º 12 (dezembro de 1995): 1510–12. http://dx.doi.org/10.1109/68.477298.
Texto completo da fonteMoura, C. G., O. Carvalho, V. H. Magalhães, R. S. F. Pereira, M. F. Cerqueira, L. M. V. Gonçalves, R. M. Nascimento e F. S. Silva. "Laser printing of micro-electronic communication systems for smart implants applications". Optics & Laser Technology 128 (agosto de 2020): 106211. http://dx.doi.org/10.1016/j.optlastec.2020.106211.
Texto completo da fontePopoola, W. O., Z. Ghassemlooy, C. G. Lee e A. C. Boucouvalas. "Scintillation effect on intensity modulated laser communication systems—a laboratory demonstration". Optics & Laser Technology 42, n.º 4 (junho de 2010): 682–92. http://dx.doi.org/10.1016/j.optlastec.2009.11.011.
Texto completo da fonteEsser, Peter D., Ethan J. Halpern e E. S. Amis. "Quality assurance of picture archiving communication systems with laser film digitizers". Journal of Digital Imaging 4, n.º 4 (novembro de 1991): 248–50. http://dx.doi.org/10.1007/bf03173907.
Texto completo da fonteIshikawa, H., H. Soda, K. Wakao, K. Kihara, K. Kamite, Y. Kotaki, M. Matsuda et al. "Distributed feedback laser emitting at 1.3 µm for gigabit communication systems". Journal of Lightwave Technology 5, n.º 6 (1987): 848–55. http://dx.doi.org/10.1109/jlt.1987.1075570.
Texto completo da fonteChen, Jiayu, Jinsheng Liu, Long Han, Mingru Ci, Dongbo Che, Lihong Guo e Hongjun Yu. "Theory of AdaDelSPGD Algorithm in Fiber Laser-Phased Array Multiplex Communication Systems". Applied Sciences 12, n.º 6 (16 de março de 2022): 3009. http://dx.doi.org/10.3390/app12063009.
Texto completo da fonteGuo, Bo, Xinyu Guo, Renlai Zhou, Zhongyao Ren, Qiumei Chen, Ruochen Xu e Wenbin Luo. "Multi-Pulse Bound Soliton Fiber Laser Based on MoTe2 Saturable Absorber". Nanomaterials 13, n.º 1 (30 de dezembro de 2022): 177. http://dx.doi.org/10.3390/nano13010177.
Texto completo da fonteSirleto, Luigi, e Maria Antonietta Ferrara. "Fiber Amplifiers and Fiber Lasers Based on Stimulated Raman Scattering: A Review". Micromachines 11, n.º 3 (26 de fevereiro de 2020): 247. http://dx.doi.org/10.3390/mi11030247.
Texto completo da fonteChen, Chen. "Special Issue on “Visible Light Communication (VLC)”". Photonics 9, n.º 5 (21 de abril de 2022): 284. http://dx.doi.org/10.3390/photonics9050284.
Texto completo da fonteZhang, Hong Tao, e Xu Hua Zhai. "Compensation Effects Analysis of Adaptive Optical System Based on Space Laser Communications". Advanced Materials Research 201-203 (fevereiro de 2011): 495–98. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.495.
Texto completo da fonteHammad, Mohab, Aleksandra Kaszubowska-Anandarajah, M. Pascual, Pascal Landais, Prajwal Lakshmijayasimha, Gaurav Jain e Prince Anandarajah. "Characterization and Direct Modulation of a Multi-Section PIC Suited for Short Reach Optical Communication Systems". Photonics 7, n.º 3 (31 de julho de 2020): 55. http://dx.doi.org/10.3390/photonics7030055.
Texto completo da fonteJiang, Guozhou, e Liu Yang. "Multi-Level Phase Noise Model for CO-OFDM Spatial-Division Multiplexed Transmission". Photonics 10, n.º 1 (23 de dezembro de 2022): 8. http://dx.doi.org/10.3390/photonics10010008.
Texto completo da fonteAli, Mohanad H., Mahmood H. Enad, Jasim Mohmed Jasim, Rawaa A. Abdul-Nab e Nadia Alani. "Study of impact of art performance level of blue laser technology applications and its control". Indonesian Journal of Electrical Engineering and Computer Science 17, n.º 3 (1 de março de 2020): 1383. http://dx.doi.org/10.11591/ijeecs.v17.i3.pp1383-1389.
Texto completo da fonteHuynh, Tam N., Frank Smyth, Lim Nguyen e Liam P. Barry. "Effects of phase noise of monolithic tunable laser on coherent communication systems". Optics Express 20, n.º 26 (29 de novembro de 2012): B244. http://dx.doi.org/10.1364/oe.20.00b244.
Texto completo da fonteLi, Mi, Yifeng Hong, Su Wang, Yuejiang Song e Xun Sun. "Radiation-induced mismatch effect on performances of space chaos laser communication systems". Optics Letters 43, n.º 20 (15 de outubro de 2018): 5134. http://dx.doi.org/10.1364/ol.43.005134.
Texto completo da fonte