Literatura científica selecionada sobre o tema "Laser communication systems"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Laser communication systems".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Laser communication systems"
Ke, Qiang. "Numerical Simulation of Chaotic Laser Secure Communication". Advanced Materials Research 798-799 (setembro de 2013): 570–73. http://dx.doi.org/10.4028/www.scientific.net/amr.798-799.570.
Texto completo da fontePengyuan Chang, Pengyuan Chang, Tiantian Shi Tiantian Shi, Shengnan Zhang Shengnan Zhang, Haosen Shang Haosen Shang, Duo Pan Duo Pan e Jingbiao Chen Jingbiao Chen. "Faraday laser at Rb 1529 nm transition for optical communication systems". Chinese Optics Letters 15, n.º 12 (2017): 121401. http://dx.doi.org/10.3788/col201715.121401.
Texto completo da fonteZeng Fengjiao, 曾凤娇, 杨康建 Yang Kangjian, 晏旭 Yan Xu, 赵孟孟 Zhao Mengmeng, 杨平 Yang Ping e 文良华 Wen Lianghua. "Research Progress on Underwater Laser Communication Systems". Laser & Optoelectronics Progress 58, n.º 3 (2021): 0300002–30000226. http://dx.doi.org/10.3788/lop202158.0300002.
Texto completo da fonteCai, Chengkun, e Jian Wang. "Femtosecond Laser-Fabricated Photonic Chips for Optical Communications: A Review". Micromachines 13, n.º 4 (16 de abril de 2022): 630. http://dx.doi.org/10.3390/mi13040630.
Texto completo da fonteStrakhov, S. Yu, A. V. Trilis e N. V. Sotnikova. "Specifics of transmitting telescopes for laser communication systems". Journal of Optical Technology 88, n.º 5 (1 de maio de 2021): 264. http://dx.doi.org/10.1364/jot.88.000264.
Texto completo da fonteGiuliano, Giovanni, Leslie Laycock, Duncan Rowe e Anthony E. Kelly. "Solar rejection in laser based underwater communication systems". Optics Express 25, n.º 26 (20 de dezembro de 2017): 33066. http://dx.doi.org/10.1364/oe.25.033066.
Texto completo da fonteMoatlhodi, Ogomoditse O., Nonofo M. J. Ditshego e Ravi Samikannu. "Vertical Cavity Surface Emitting Lasers as Sources for Optical Communication Systems: A Review". Journal of Nano Research 65 (dezembro de 2020): 51–96. http://dx.doi.org/10.4028/www.scientific.net/jnanor.65.51.
Texto completo da fonteNiu, Shen, Yue Song, Ligong Zhang, Yongyi Chen, Lei Liang, Ye Wang, Li Qin et al. "Research Progress of Monolithic Integrated DFB Laser Arrays for Optical Communication". Crystals 12, n.º 7 (21 de julho de 2022): 1006. http://dx.doi.org/10.3390/cryst12071006.
Texto completo da fonteDmytryszyn, Mark, Matthew Crook e Timothy Sands. "Preparing for Satellite Laser Uplinks and Downlinks". Sci 2, n.º 1 (18 de março de 2020): 16. http://dx.doi.org/10.3390/sci2010016.
Texto completo da fonteLaksono, Pranoto Budi. "A STUDY OF THE INFLUENCE OF 650 nm LASER INTERFERENCE ON VISIBLE LASER LIGHT COMMUNICATION SYSTEM". TEKNOKOM 4, n.º 2 (1 de setembro de 2021): 60–65. http://dx.doi.org/10.31943/teknokom.v4i2.66.
Texto completo da fonteTeses / dissertações sobre o assunto "Laser communication systems"
Sabala, Ryan J. "Satellite Attitude Determination Using Laser Communication Systems". Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1218636153.
Texto completo da fonteSofka, Jozef. "New generation of gimbals systems for aerospace applications". Diss., Online access via UMI:, 2007.
Encontre o texto completo da fonteQureshi, Zihad. "Vertical cavity surface emitting lasers in high speed optical data communications". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608126.
Texto completo da fonteBar, Siman Tov Omar. "Adaptive optimization of a free-space laser communication system under dynamic link attenuation". Diss., Online access via UMI:, 2009.
Encontre o texto completo da fonteIncludes bibliographical references.
Bonk, Scott S. "The use of point-to-point lasers for navy ships". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FBonk.pdf.
Texto completo da fonteTimus, Oguzhan. "Free space optic communication for Navy surface ship platforms". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Mar%5FTimus.pdf.
Texto completo da fonteZhu, Benyuan. "Multichannel grating cavity laser for optically multiplexed communication systems". Thesis, University of Bath, 1996. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320438.
Texto completo da fonteLee, Myron S. M. Massachusetts Institute of Technology. "Optomechanical and wavelength alignments of CubeSat laser communication Systems". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112470.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 97-100).
While the introduction of CubeSats has enabled the scientific, commercial, and governmental communities to launch space missions more quickly at lower costs, the communication subsystems of the platform are limited by a heavily regulated and overcrowded RF spectrum. Scientific instruments with increasing capabilities on CubeSats are generating massive amounts of data and are quickly pushing the boundaries of the data rates of current RF communication systems. An alternative to the traditional RF communication system is the free space optical (FSO) communication system. With higher power efficiency, FSO communication, or lasercom, can potentially provide higher data rates using less power and also avoid the RF spectrum regulatory process. MIT's Nanosatellite Optical Downlink Experiment (NODE) is an effort to demonstrate low cost and high speed optical downlink from LEO for CubeSats, and this thesis focuses on alignments in the optomechanical system and transmitter system of the NODE payload. First, simulation and analyses are performed on an optomechanical model of NODE to study the effects potential misalignments of hardware components can have on the overall system. Second, we present an autonomous optimization algorithm that monitors the conditions of the transmitter system and compensates for wavelength misalignments between the transmitter optical components caused by variations in the thermal environment.
by Myron Lee.
S.M.
Johnson, Peter Thomas. "Spectral correlation of semiconductor laser". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385428.
Texto completo da fonteHill, Timothy J. "Interference of intensity noise in a multimode Nd:YAG laser". Title page, abstract and contents only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phh6484.pdf.
Texto completo da fonteLivros sobre o assunto "Laser communication systems"
1923-, Katzman Morris, ed. Laser satellite communications. Englewood Cliffs, NJ: Prentice-Hall, 1987.
Encontre o texto completo da fonteCoherent lightwave communication systems. Boston: Artech House, 1995.
Encontre o texto completo da fonteL, Casey William, ed. Laser communications in space. Boston: Artech House, 1995.
Encontre o texto completo da fonteJ, Adams M., e Institution of Electrical Engineers, eds. Semiconductor lasers for long-wavelength optical-fibre communications systems. London, U.K: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1987.
Encontre o texto completo da fonteIntroduction to lightwave communication systems. Boston: Artech House, 1997.
Encontre o texto completo da fonte1959-, Voelz David George, Ricklin Jennifer Crider 1960- e Society of Photo-optical Instrumentation Engineers., eds. Free-space laser communication and laser imaging: 30-31 July, 2001, San Diego, [Calif.]. Bellingham, Wash: SPIE, 2001.
Encontre o texto completo da fonte1959-, Voelz David George, Ricklin Jennifer Crider 1960- e Society of Photo-optical Instrumentation Engineers., eds. Free-space laser communication and laser imaging II: 9-11 July, 2002, Seattle, Washington. Bellingham, Wash: SPIE, 2002.
Encontre o texto completo da fonteC, Ricklin Jennifer, Voelz David G e Society of Photo-optical Instrumentation Engineers., eds. Free-space laser communication and laser imaging: 30-31 July, 2001, San Diego, California. Bellingham, Wash., USA: SPIE, 2002.
Encontre o texto completo da fonteE, Enstrom R., Longeway P. A e Langley Research Center, eds. Monolithic narrow-linewidth InGaAsP semiconductor laser for coherent optical communications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Encontre o texto completo da fonteE, Enstrom R., Longeway P. A e Langley Research Center, eds. Monolithic narrow-linewidth InGaAsP semiconductor laser for coherent optical communications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Laser communication systems"
Klotzkin, David J. "Laser Communication Systems I: Amplitude Modulated Systems". In Introduction to Semiconductor Lasers for Optical Communications, 293–321. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24501-6_11.
Texto completo da fonteAl-Ramli, F. K. "Optimum Receiver Structure and Filter Design for MPAM Optical Space Communication Systems". In Laser in der Technik / Laser in Engineering, 192–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84736-3_35.
Texto completo da fonteRaj, Utkarsh, Neha Nidhi e Vijay Nath. "Automated Toll Plaza Using Barcode-Laser Scanning Technology". In Nanoelectronics, Circuits and Communication Systems, 475–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0776-8_44.
Texto completo da fonteMajumdar, Arun K. "Laser Satellite Communications: Fundamentals, Systems, Technologies, and Applications". In Laser Communication with Constellation Satellites, UAVs, HAPs and Balloons, 63–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03972-0_3.
Texto completo da fonteWatanabe, Kota, Takuto Koyama, Hiroshi Koga, Kiyotaka Izumi e Takeshi Tsujimura. "Tactical Alignment of Aerial Transmission Laser Beam for Free Space Optics Communication". In Lecture Notes in Networks and Systems, 102–14. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14314-4_10.
Texto completo da fonteJono, Shun, Takuto Koyama, Kota Watanabe, Kiyotaka Izumi e Takeshi Tsujimura. "Optical Simulations on Aerial Transmitting Laser Beam for Free Space Optics Communication". In Advances in Networked-Based Information Systems, 59–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84913-9_6.
Texto completo da fonteMajumdar, Arun K. "Laser-Based Satellite and Inter-satellite Communication Systems: Advanced Technologies and Performance Analysis". In Laser Communication with Constellation Satellites, UAVs, HAPs and Balloons, 199–229. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03972-0_7.
Texto completo da fonteMajumdar, Arun K. "Optical Laser Links in Space-Based Systems for Global Communications Network Architecture: Space/Aerial, Terrestrial, and Underwater Platforms". In Laser Communication with Constellation Satellites, UAVs, HAPs and Balloons, 97–128. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03972-0_4.
Texto completo da fonteDudin, Alexander N., Valentina I. Klimenok e Vladimir M. Vishnevsky. "Mathematical Models and Methods of Investigation of Hybrid Communication Networks Based on Laser and Radio Technologies". In The Theory of Queuing Systems with Correlated Flows, 241–306. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32072-0_5.
Texto completo da fonteKlotzkin, David J. "Coherent Communication Systems". In Introduction to Semiconductor Lasers for Optical Communications, 323–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24501-6_12.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Laser communication systems"
Giuliano, Giovanni, Shaun Viola, Scott Watson, Leslie Laycock, Duncan Rowe e Anthony E. Kelly. "Laser based underwater communication systems". In 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550382.
Texto completo da fonteHamilton, S. A., R. S. Bondurant, D. M. Boroson, J. W. Burnside, D. O. Caplan, E. A. Dauler, A. S. Fletcher et al. "Long-Haul Atmospheric Laser Communication Systems§". In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ofc.2011.owx2.
Texto completo da fonteGaraymovich, Nicolay P., Vladimir N. Grigoriev, Alexander P. Huppenen, Michael A. Sadovnikov, Victor D. Shargorodsky e Victor V. Sumerin. "Free-space laser communication systems: internationally and in Russia". In Laser Optics 2000, editado por Serguei A. Gurevich e Nikolay N. Rosanov. SPIE, 2001. http://dx.doi.org/10.1117/12.418827.
Texto completo da fonteRoberts, Lewis C. "Satellite Laser Communication and Adaptive Optics". In Adaptive Optics: Analysis, Methods & Systems. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/aoms.2020.jw4g.1.
Texto completo da fonteChen, Yan, e Tianzhi Yao. "Laser Communication Theorem and New Communication Engineering Revolution". In ICAIIS 2021: 2021 2nd International Conference on Artificial Intelligence and Information Systems. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3469213.3471323.
Texto completo da fonteHacker, G. "Homodyne Detection for Optical Space Communications". In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/clr.1987.thb1.
Texto completo da fonteBagrov, Alexander V., e Vladimir P. Lukin. "Laser optical communication systems with space transmitters". In SPIE Proceedings, editado por Gelii A. Zherebtsov e Gennadii G. Matvienko. SPIE, 2006. http://dx.doi.org/10.1117/12.675242.
Texto completo da fonteShubert, Paul D. "Atmospheric fade probability in moderate aperture laser communication systems". In Free-Space Laser Communications XXXI, editado por Hamid Hemmati e Don M. Boroson. SPIE, 2019. http://dx.doi.org/10.1117/12.2508069.
Texto completo da fonteChristopher, Paul. "Climate Satellites with Laser Communication Links". In 28th AIAA International Communications Satellite Systems Conference (ICSSC-2010). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-8849.
Texto completo da fonteCarlson, N. W., G. A. Evans, D. P. Bour e S. K. Liew. "Applications of surface-emitting lasers to coherent communication systems". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.tul6.
Texto completo da fonteRelatórios de organizações sobre o assunto "Laser communication systems"
Ruggiero, A., e A. Orgren. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0. Office of Scientific and Technical Information (OSTI), agosto de 2017. http://dx.doi.org/10.2172/1389996.
Texto completo da fonteGibson, Steve, e Tsu-Chin Tsao. Control, Filtering and System Identification for High Energy Lasers and Laser Communications. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2012. http://dx.doi.org/10.21236/ada565747.
Texto completo da fonteWilkins, Gary D. Eye-Safe 2-Micron Laser Communications System. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1996. http://dx.doi.org/10.21236/ada309907.
Texto completo da fonteTaylor, Johnny A., Allen D. Pillsbury e Don M. Boroson. Space Qualification for an Intersatellite Laser Communications System. Fort Belvoir, VA: Defense Technical Information Center, março de 1993. http://dx.doi.org/10.21236/ada265145.
Texto completo da fonteWilkins, Gary D. Atmospheric Transverse Coherence Length Measurement System for Laser Communications. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1993. http://dx.doi.org/10.21236/ada263563.
Texto completo da fonteBourrier, Mathilde, Michael Deml e Farnaz Mahdavian. Comparative report of the COVID-19 Pandemic Responses in Norway, Sweden, Germany, Switzerland and the United Kingdom. University of Stavanger, novembro de 2022. http://dx.doi.org/10.31265/usps.254.
Texto completo da fonteChapman, Ray, Phu Luong, Sung-Chan Kim e Earl Hayter. Development of three-dimensional wetting and drying algorithm for the Geophysical Scale Transport Multi-Block Hydrodynamic Sediment and Water Quality Transport Modeling System (GSMB). Engineer Research and Development Center (U.S.), julho de 2021. http://dx.doi.org/10.21079/11681/41085.
Texto completo da fonteAtkinson, Dan, e Alex Hale, eds. From Source to Sea: ScARF Marine and Maritime Panel Report. Society of Antiquaries of Scotland, setembro de 2012. http://dx.doi.org/10.9750/scarf.09.2012.126.
Texto completo da fonteRankin, Nicole, Deborah McGregor, Candice Donnelly, Bethany Van Dort, Richard De Abreu Lourenco, Anne Cust e Emily Stone. Lung cancer screening using low-dose computed tomography for high risk populations: Investigating effectiveness and screening program implementation considerations: An Evidence Check rapid review brokered by the Sax Institute (www.saxinstitute.org.au) for the Cancer Institute NSW. The Sax Institute, outubro de 2019. http://dx.doi.org/10.57022/clzt5093.
Texto completo da fonte