Artigos de revistas sobre o tema "Large-Scales"

Siga este link para ver outros tipos de publicações sobre o tema: Large-Scales.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Large-Scales".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Raccanelli, Alvise. "Testing gravity on Large Scales". EPJ Web of Conferences 58 (2013): 02013. http://dx.doi.org/10.1051/epjconf/20135802013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Drinkwater, M. "Quasar clustering on large scales". Monthly Notices of the Royal Astronomical Society 235, n.º 4 (1 de dezembro de 1988): 1111–20. http://dx.doi.org/10.1093/mnras/235.4.1111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Maddox, S. J., G. Efstathiou, W. J. Sutherland e J. Loveday. "Galaxy correlations on large scales". Monthly Notices of the Royal Astronomical Society 242, n.º 1 (1 de fevereiro de 1990): 43P—47P. http://dx.doi.org/10.1093/mnras/242.1.43p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Efstathiou, G. "Galaxy clustering on large scales." Proceedings of the National Academy of Sciences 90, n.º 11 (1 de junho de 1993): 4859–66. http://dx.doi.org/10.1073/pnas.90.11.4859.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Mo, H. J., e L. Z. Fang. "Quasar clustering on large scales". Astrophysical Journal 410 (junho de 1993): 493. http://dx.doi.org/10.1086/172766.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Beswick, K. M., T. W. Simpson, D. Fowler, T. W. Choularton, M. W. Gallagher, K. J. Hargreaves, M. A. Sutton e A. Kaye. "Methane emissions on large scales". Atmospheric Environment 32, n.º 19 (outubro de 1998): 3283–91. http://dx.doi.org/10.1016/s1352-2310(98)00080-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Martínez, Vicent J. "(Non-)fractality on Large Scales". Symposium - International Astronomical Union 201 (2005): 168–77. http://dx.doi.org/10.1017/s0074180900216239.

Texto completo da fonte
Resumo:
The debate about the possible smoothness of the Universe on large scales as opposed to an unbounded fractal hierarchy has been the subject of increasing interest in recent years. The controversy arises as a consequence of different statistical analyses performed on surveys of galaxy redshifts. I review the observational evidence supporting the idea that a gradual transition occurs in the galaxy distribution: from a fractal regime at small scales to large scale homogeneity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wegner, Gary. "Gravity tested on large scales". Nature 477, n.º 7366 (setembro de 2011): 541–43. http://dx.doi.org/10.1038/477541a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Maurer, Brian A. "Ecology and Evolution at Large Scales". Ecology 84, n.º 12 (dezembro de 2003): 3405–6. http://dx.doi.org/10.1890/0012-9658(2003)084[3405:eaeals]2.0.co;2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

RUDNICK, LAWRENCE. "OBSERVING MAGNETIC FIELDS ON LARGE SCALES". Journal of The Korean Astronomical Society 37, n.º 5 (1 de dezembro de 2004): 329–35. http://dx.doi.org/10.5303/jkas.2004.37.5.329.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Muriel, Hernan, e Diego G. Lambas. "Alignments and filaments on large scales". Astronomical Journal 98 (dezembro de 1989): 1995. http://dx.doi.org/10.1086/115273.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Zawadowski, A. G., J. Kertész e G. Andor. "Large price changes on small scales". Physica A: Statistical Mechanics and its Applications 344, n.º 1-2 (dezembro de 2004): 221–26. http://dx.doi.org/10.1016/j.physa.2004.06.121.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Oberhuber, Josef M., Michael Herzog, Hans-F. Graf e Karsten Schwanke. "Volcanic plume simulation on large scales". Journal of Volcanology and Geothermal Research 87, n.º 1-4 (dezembro de 1998): 29–53. http://dx.doi.org/10.1016/s0377-0273(98)00099-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Schroder, Rasmus R., Holger Blank, Andreas Schertel, Marlene Thaler, Alexander Orchowski e Irene Wacker. "Correlative large volume imaging across scales". Microscopy and Microanalysis 21, S3 (agosto de 2015): 415–16. http://dx.doi.org/10.1017/s1431927615002871.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Martinez-Vazquez, P., e M. Sterling. "Predicting wheat lodging at large scales". Biosystems Engineering 109, n.º 4 (agosto de 2011): 326–37. http://dx.doi.org/10.1016/j.biosystemseng.2011.04.012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Michel, Patrik. "Prehospital Scales for Large Vessel Occlusion". Stroke 48, n.º 2 (fevereiro de 2017): 247–49. http://dx.doi.org/10.1161/strokeaha.116.015511.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Pouquet, A., R. Marino, P. D. Mininni e D. Rosenberg. "Dual constant-flux energy cascades to both large scales and small scales". Physics of Fluids 29, n.º 11 (novembro de 2017): 111108. http://dx.doi.org/10.1063/1.5000730.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Doroshkevich, A. G., e A. A. Klypin. "Perturbations and streaming motions on large scales". Monthly Notices of the Royal Astronomical Society 235, n.º 3 (dezembro de 1988): 865–74. http://dx.doi.org/10.1093/mnras/235.3.865.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Lum, Ka, David Chandler e John D. Weeks. "Hydrophobicity at Small and Large Length Scales". Journal of Physical Chemistry B 103, n.º 22 (junho de 1999): 4570–77. http://dx.doi.org/10.1021/jp984327m.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Tesloianu, Dan, Vlad Ghizdovăţ, Irina Butuc, Constantin Grecea, Liliana Rosemarie Manea, Viorel Puiu-Păun, Maricel Agop e Cipriana Ştefănescu. "Structure Coherence at Small and Large Scales". Journal of Computational and Theoretical Nanoscience 12, n.º 12 (1 de dezembro de 2015): 5587–92. http://dx.doi.org/10.1166/jctn.2015.4687.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Brodrick, P. G., L. D. L. Anderegg e G. P. Asner. "Forest Drought Resistance at Large Geographic Scales". Geophysical Research Letters 46, n.º 5 (março de 2019): 2752–60. http://dx.doi.org/10.1029/2018gl081108.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Richter, D. "Polymer dynamics from large to small scales". Journal of Applied Crystallography 36, n.º 3 (16 de abril de 2003): 389–96. http://dx.doi.org/10.1107/s0021889803005053.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Ralph, Elise A. "Scales and structures of large lake eddies". Geophysical Research Letters 29, n.º 24 (dezembro de 2002): 30–1. http://dx.doi.org/10.1029/2001gl014654.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Kang, X., W. P. Lin, X. Dong, Y. O. Wang, A. Dutton e A. Macciò. "Galaxy alignment on large and small scales". Proceedings of the International Astronomical Union 11, S308 (junho de 2014): 448–51. http://dx.doi.org/10.1017/s1743921316010346.

Texto completo da fonte
Resumo:
AbstractGalaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Mollerach, Silvia, Diego Harari e Esteban Roulet. "Large scales anisotropies of extragalactic cosmic rays". Nuclear and Particle Physics Proceedings 273-275 (abril de 2016): 282–88. http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.039.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Guzzo, Luigi. "Is the universe homogeneous? (On large scales)". New Astronomy 2, n.º 6 (dezembro de 1997): 517–32. http://dx.doi.org/10.1016/s1384-1076(97)00037-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Laing, R. A. "Large-Scale Structure: Jets on kiloparsec Scales". Symposium - International Astronomical Union 175 (1996): 147–52. http://dx.doi.org/10.1017/s0074180900080360.

Texto completo da fonte
Resumo:
This paper examines some of the consequences of the hypothesis that jets in all radio galaxies and quasars are relativistic on small scales, in the sense that the flow velocity >0.5c. This idea is suggested by a number of lines of evidence. Firstly, Unified Models (Urry & Padovani, 1995) imply that the relativistic motion required in core-dominated objects must also occur in a larger parent population consisting of most, if not all, extended sources. Secondly, superluminal motion is detected in the nuclei of extended sources and in the kpc-scale jet of M 87 (Hough, 1994; Biretta, Zhou & Owen, 1995). Thirdly, jets are one-sided in the same sense on pc and kpc scales; at all luminosities, the radio emission tends to become more symmetrical on larger scales, as expected if an initially relativistic flow decelerates (Bridle & Perley, 1984; Bridle et al., 1994a; Parma et al., 1994). Finally, depolarization asymmetry occurs in both low (Parma, de Ruiter & Fanti, 1996) and high (Laing, 1988; Garrington et al., 1988) luminosity sources: the implication is that the brighter jet is on the near side of the source. It is likely that the key difference between radio sources in the two morphological classes defined by Fanaroff & Riley (1974) are that relativistic flow persists to the extremities of FRII sources, but that FRI jets decelerate smoothly on intermediate scales (Laing, 1993; Bicknell, 1995). On kiloparsec scales, we can identify structures which we propose should be called fast jets. These are well-collimated and generally one-sided (in the sense that the jet/counterjet ratio >4:1). They also have longitudinal apparent magnetic field (B||). They occur both in FRII sources, and at the bases of FRI jets (Bridle & Perley, 1984). We suggest that they are relativistic flows, and that this fact is crucial to an understanding of their evolution. A framework for the understanding of the variety of extended structures in extragalactic radio sources in this context is illustrated in Figure 1, which is an improved version of the diagram presented by Laing (1993). A fast jet appears to be able to: decelerate and recollimate to form a slow jet with β << 1 (therefore two-sided unless external effects dominate); disrupt, as in wide-angle tail sources, or hit the external medium and form a hot-spot. Slow jets are probably formed only when a decelerating fast jet can be recollimated by the external pressure gradient (Phinney, 1983; Bowman, Leahy & Komissarov, 1995). This may not be possible for more powerful sources in flatter pressure gradients and it is likely that wide-angle tail sources are formed when a fast jet decelerates rapidly but cannot recollimate. Deceleration by entrainment is efficient when the jet is transonic, and Bicknell (1994) showed that this corresponds to β ≈0.3 − 0.7 for a relativistic jet. If the jet does not slow down sufficiently (e.g. by mass loading; Komissarov 1994), then the flow will remain supersonic until it impacts on the external medium, and an FRII source will result. The radio morphology is therefore determined by a combination of initial jet speed and thrust and the effects of the environment, via the rate of stellar mass loss and the pressure gradient. On the largest scales, a bridge(backflow) or tail (outflow) will be formed. If the jet remains supersonic as far as the end of the lobe (as in an FRII source), then it is inevitable that a backflow (bridge) will be generated. As emphasised by Parma, de Ruiter & Fanti (1996), the majority of FRI sources also show bridges: the residual momentum of the jets, their density contrast with the external medium and the external pressure gradient are all likely to be important in determining their large-scale morphologies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Bertoluzza, Silvia, e Silvia Falletta. "Building Wavelets on ]0,1[ at Large Scales". Journal of Fourier Analysis and Applications 9, n.º 3 (1 de maio de 2003): 261–88. http://dx.doi.org/10.1007/s00041-003-0014-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Tavecchio, F. "Extragalactic jets on subpc and large scales". Astrophysics and Space Science 311, n.º 1-3 (26 de julho de 2007): 247–55. http://dx.doi.org/10.1007/s10509-007-9546-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Liu, Chao, e Todd A. Oliynyk. "Cosmological Newtonian Limits on Large Spacetime Scales". Communications in Mathematical Physics 364, n.º 3 (26 de julho de 2018): 1195–304. http://dx.doi.org/10.1007/s00220-018-3214-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Zhang, Xiang. "Metamaterials for perpetual cooling at large scales". Science 355, n.º 6329 (9 de março de 2017): 1023–24. http://dx.doi.org/10.1126/science.aam8566.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Wong, L. T., e C. L. Yau. "Sanitary Accommodation Scales for Large Shopping Malls". Architectural Science Review 47, n.º 4 (dezembro de 2004): 355–64. http://dx.doi.org/10.1080/00038628.2000.9697545.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Brechet, Sylvain D., e Jean-Philippe Ansermet. "Heat-driven spin currents on large scales". physica status solidi (RRL) - Rapid Research Letters 5, n.º 12 (20 de junho de 2011): 423–25. http://dx.doi.org/10.1002/pssr.201105180.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

YAMAZAKI, Shojiro, e Sigeyasu KOBAYASHI. "Protein separation and purification. Small and large scales." Journal of Synthetic Organic Chemistry, Japan 46, n.º 11 (1988): 1014–24. http://dx.doi.org/10.5059/yukigoseikyokaishi.46.1014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Zhang, Heling, Yonglu Ren e Guangyong Zhang. "Super Large Scales Reflection Hologram on Dichromated Gelatin." Journal of Photopolymer Science and Technology 9, n.º 1 (1996): 131–36. http://dx.doi.org/10.2494/photopolymer.9.131.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Duniya, Didam G. A., Teboho Moloi, Chris Clarkson, Julien Larena, Roy Maartens, Bishop Mongwane e Amanda Weltman. "Probing beyond-Horndeski gravity on ultra-large scales". Journal of Cosmology and Astroparticle Physics 2020, n.º 01 (14 de janeiro de 2020): 033. http://dx.doi.org/10.1088/1475-7516/2020/01/033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Sanders, Wendy, Carolyn Judge, Eric Winkel, Steven Ceccio, David Dowling e Marc Perlin. "Turbulent boundary layer pressure fluctuations at large scales". Journal of the Acoustical Society of America 111, n.º 5 (2002): 2425. http://dx.doi.org/10.1121/1.4778293.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Amendola, Luca, Ana Marta Pinho e Santiago Casas. "Model-independent measures of gravity at large scales". International Journal of Modern Physics A 33, n.º 31 (10 de novembro de 2018): 1844022. http://dx.doi.org/10.1142/s0217751x18440220.

Texto completo da fonte
Resumo:
This paper aims at showing how to probe gravity in a model independent way using observable quantities which can be measured with the minimum number of assumptions. We find that it is possible to estimate the gravitational slip, defined as the ratio of the gravitational potentials, independently of assumptions concerning initial conditions, bias, and other cosmological parameters. Analyzing all the data currently available, we find [Formula: see text] in the redshift range [Formula: see text]. Future datasets, like those provided by the Euclid satellite, will tighten this constraint by more than an order of magnitude.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Pápai, Péter, e Ravi K. Sheth. "On the anisotropic density distribution on large scales". Monthly Notices of the Royal Astronomical Society 429, n.º 2 (7 de dezembro de 2012): 1133–38. http://dx.doi.org/10.1093/mnras/sts399.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Valsesia, Diego, Giulio Coluccia, Tiziano Bianchi e Enrico Magli. "ToothPic: Camera-Based Image Retrieval on Large Scales". IEEE MultiMedia 26, n.º 2 (1 de abril de 2019): 33–43. http://dx.doi.org/10.1109/mmul.2018.2873845.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Damschen, E. I. "Corridors Increase Plant Species Richness at Large Scales". Science 313, n.º 5791 (1 de setembro de 2006): 1284–86. http://dx.doi.org/10.1126/science.1130098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Antoniadis, Ignatios, Pawel O. Mazur e Emil Mottola. "Fractal geometry of quantum spacetime at large scales". Physics Letters B 444, n.º 3-4 (dezembro de 1998): 284–92. http://dx.doi.org/10.1016/s0370-2693(98)01375-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Luo, Shan, e Ethan T. Vishniac. "Can Extra Power Explain Periodicity on Large Scales?" Astrophysical Journal 415 (outubro de 1993): 450. http://dx.doi.org/10.1086/173177.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Delsink, Audrey, Abi T. Vanak, Sam Ferreira e Rob Slotow. "Biologically relevant scales in large mammal management policies". Biological Conservation 167 (novembro de 2013): 116–26. http://dx.doi.org/10.1016/j.biocon.2013.07.035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Del Aguila, F., e G. D. Coughlan. "Very large intermediate scales in three-generation models". Physics Letters B 215, n.º 1 (dezembro de 1988): 93–98. http://dx.doi.org/10.1016/0370-2693(88)91077-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Shen, Hubert H. "Non-solenoidal large scales in mean-incompressible turbulence". Physica D: Nonlinear Phenomena 37, n.º 1-3 (julho de 1989): 192–99. http://dx.doi.org/10.1016/0167-2789(89)90128-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Laurance, William F. "Do edge effects occur over large spatial scales?" Trends in Ecology & Evolution 15, n.º 4 (abril de 2000): 134–35. http://dx.doi.org/10.1016/s0169-5347(00)01838-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Liske, J. "A hypothetical cosmological test: Trigonometry on large scales". Astronomy & Astrophysics 398, n.º 2 (21 de janeiro de 2003): 429–33. http://dx.doi.org/10.1051/0004-6361:20021494.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Valiela, Ivan. "Suitably Large Scales for Study of Marine Ecosystems". Ecology 71, n.º 5 (outubro de 1990): 2031. http://dx.doi.org/10.2307/1937616.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Lu, Zhiping, Ming Li e Wei Zhao. "Normality of Ethernet Traffic at Large Time Scales". Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/471963.

Texto completo da fonte
Resumo:
We contribute the quantitative descriptions of the large time scales for the Ethernet traffic to be Gaussian. We focus on the normality property of the accumulated traffic data under different time scales. The investigation is carried out graphically by the quantile-quantile (QQ) plots and numerically by statistical tests. The present results indicate that the larger the time scale, the more normal the Ethernet traffic.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia